二项式定理教案优质课
“二项式定理教案优质课”相关的资料有哪些?“二项式定理教案优质课”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二项式定理教案优质课”相关范文大全或资料大全,欢迎大家分享。
二项式定理说课稿
说 课
《二项式定理》
二项式定理
说课流程图
一、 二、 三、 四、
1
课题所处地位 教材分析 教学目标、重点、难点及关键 教学方法的选择 教法分析 教学手段的选择 学法分析 新课导入 新课展开 教学程序 小 结 板书设计 二项式定理
课题:二项式定理
本节课的教学设计可分为以下四部分:教材分析、教法分析、学法分析和教学程序设计。
一、教材分析
1、课题所处位置与地位
二项式定理,是全日制普通高级中学教科书(实验修订本.必修)数学第二册(下A) 第十章第四节内容。
作为初中一种多项式乘法公式推广的二项式定理,不仅使前面组合等知识的学习得到强化,而且与后面概率中的二项分布有着密切联系。在本章中,它起着承上启下的作用。
它是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,也是后继课程某些内容的一个铺垫。运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等等。
作为高中数学必修内容的一个部分,它是培养学生观察、归纳能力的好题材。因此本章节在整个高中数学中占有重要地位,具有较高的应用价值和思维训练价值。 2、教学目标、重点、难
二项式定理说课稿- fileqlteachercom
二项式定理说课稿
一、教材分析
1、教材地位和作用:
二项式定理是选修2-3的1.3节的第一课时,本节课是在学习了排列组合的基础上学习的,并为后面学习概率中的二项分布奠定了基础,所以它是承上启下的一节课。二项式定理不仅能解决某些整除性、近似计算问题的一种方法,并且还能解释集合的子集个数问题;再者,二项式定理不仅仅是初中多项式乘法的拓展,它又是数学分析中函数级数展开式的一个特例,在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用,因此这节课在高中数学中有着十分重要的作用。
2.重点难点
根据本节教材特点及学生的认知结构确定本节课的教学重点为:二项定理的推导及通项公式的运用
由于二项式定理的导出对学生来讲有一定的难度所以确定本节课的难点为:二项式定理的推导
二、目标分析
1、结合重点中学学生的实际情况,确定本节课的教学目标如下:
(1)掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项.
(2)通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力.
(3)激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美
16.5(1)二项式定理
1、掌握二项式定理的概念、通项、 展开式;2、掌握并会应用二项式定理。
(a b) a 2ab b2
2
2
(a+b)2= (a+b) (a+b)展开后其项的形式为:a2 , ab , b2这三项的系数为各项在展开式中出现的次数。考虑b 每个都不取b的情况有1种,即C20 ,则a2前的系数为C20 恰有1个取b的情况有C21种,则ab前的系数为C21 恰有2个取b的情况有C22 种,则b2前的系数为C22
(a b) a 3a b 3ab b = C30a3 +C31a2b+C32ab2 +C33 b33
(a+b)2 = a2 +2ab+b2 =C20 a2 + C21 ab+ C22 b23 2 2 3
(a+b)4= (a+b) (a+b) (a+b) (a+b)=?
问题:1).(a+b)4展开后各项形式分别是什么? a4 a3b a2b2 ab3 b4 2).各项前的系数代表着什么?
各项前的系数代表着这些项在展开式 中出现的次数3).你能分析说明各项前的系数吗?
3).你能分析说明各项前的系数吗?(a+b)4= (a+b) (a+b) (a+b) (a+b) a4 a3b a2b2 ab3 项b4都 不 取 b
02二项式定理通项公式
二项式定理的复习 1.二项展开式:
c a + c a b +L+ c a b +L+ c b0 n n
( a + b)
n
=r n r r n n n n
1 n 1 n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。 二项展开式中的第k+1项为Cnkan-kbk 叫做二项展开式的通项, 通项公式:TK+1=Cnkan-kbk
2.二项展开式的特点 2.二项展开式的特点 (1) 项数: 展开式有共n+1项 项数: 展开式有共n+1项 n+1 都是组合数, (2) 系数 : 都是组合数, 依次为C 依次为Cn0,Cn1,Cn2,Cn3,…Cnn C (3) 指数的特点 : a的指数 (降幂 降幂) 1) a的指数 由n 0 (降幂) 2) b的指数由0 b的指数由0 n (升幂) (升幂) 的指数由 升幂 a和 的指数和为n 3) a和b的指数和为n
3.二项式定理的几个变式:
(a +b)(a-b)n
n
= c a + c a b +L+ c a b +L+ c b0 n n
1 n 1 n
r n r r n
n n n
1 2 k = an Cnan 1b + Cn an 1b2
二项式定理教学反思
篇一:二项式定理教学反思
二项式定理教学反思
黄慧莹 二项式定理是初中学过的多项式乘法的继续,是排列组合知识的具体运用,定理的证明是计数原理的应用.
本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题――探究”的教学模式, 把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程.
本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依.
教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体.教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现解决一般问题的方法.教学中我特别注重运用通项意识凡涉及到展开式的项及其系数等问题
第十章排列组合和二项式定理(第12课)二项式定理(1)
高中数学教案 第十章排列组合和二项式定理(第12课时) 王新敞
课 题: 10 4
二项式定理(一)
教学目的:
1掌握二项式定理及二项式展开式的通项公式.
2.会利用二项展开式及通项公式解决有关问题. 教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:
二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.
通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.
二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.
二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法
排列组合、二项式定理
排列组合、二项式定理
1.(2014?广西)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A.60种 B. 70种 C. 75种 D. 150种 2.(2014?黄冈模拟)用5,6,7,8,9组成没有重复数字的五位数,其中有且仅有一个偶数夹在两个奇数之间的五位数的个数为( ) 36 48 72 120 A.B. C. D. 3.(2014?蓟县一模)从星期一到星期六安排甲、乙、丙三人值班,每人值2天班,如果甲不安排在星期一,乙不安排在星期六,那么值班方案种数为( ) 42 30 72 60 A.B. C. D. 4.(2014?张掖三模)我校要从4名男生和2名女生中选出2人担任H7N9禽流感防御宣传工作,则在选出的宣传者中,男、女都有的概率为( ) A.B. C. D. 5.(2014?宜宾一模)已知5名医生和3名护士被分配到甲、乙两所学校为学生体检,每校至少要分配2名医生和1名护士,则不同的分配方案共有( ) A.30种 B. 60种 C. 90种 D. 120种 6.(2014?黄冈模拟)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程
高中数学 二项式定理(一)教案
二项式定理教案(一)
一、教学目标: 1.知识技能:
(1)理解二项式定理是代数乘法公式的推广
(2)理解并掌握二项式定理,能利用计数原理证明二项式定理 2.过程与方法
通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式 3.情感、态度、价值观
培养学生自主探究意识,合作精神,体验二项式定理的发现和创造历程,体会数学语言的简捷和严谨 二、教学重点、难点
重点:用计数原理分析(a?b)3的展开式得到二项式定理。
难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律。 三、教学过程 (一)提出问题:
引入:二项式定理研究的是(a?b)n的展开式。如(a?b)2?a2?2ab?b2, 那么:
(a?b)3=? (a?b)4=? (a?b)100=? 更进一步:(a?b)n=?
(二)对(a?b)2展开式的分析
(a?b)2?(a?b)(a?b) 展开后其项的形式为:a2,ab,b2
00考虑b,每个都不取b的情况有1种,即c2 ,则a2前的系数为c2 1c恰有1个取b的情况有c1种,则前的系数为ab22 22恰有2个取b的情
第十章排列组合和二项式定理(第12课)二项式定理(1)
高中数学教案 第十章排列组合和二项式定理(第12课时) 王新敞
课 题: 10 4
二项式定理(一)
教学目的:
1掌握二项式定理及二项式展开式的通项公式.
2.会利用二项展开式及通项公式解决有关问题. 教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:
二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.
通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.
二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.
二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法
第十章排列组合和二项式定理(第12课)二项式定理(1)
高中数学教案 第十章排列组合和二项式定理(第12课时) 王新敞
课 题: 10 4
二项式定理(一)
教学目的:
1掌握二项式定理及二项式展开式的通项公式.
2.会利用二项展开式及通项公式解决有关问题. 教学重点:二项式定理及通项公式的掌握及运用 教学难点:二项式定理及通项公式的掌握及运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:
二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.
通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成.
二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.
二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质2、需要用到不太熟悉的数学归纳法