t分布的期望和方差的计算

“t分布的期望和方差的计算”相关的资料有哪些?“t分布的期望和方差的计算”相关的范文有哪些?怎么写?下面是小编为您精心整理的“t分布的期望和方差的计算”相关范文大全或资料大全,欢迎大家分享。

常见分布的期望和方差 ()

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

常见分布的期望和方差

x n

(0,1)

N()

概率与数理统计重点摘要

1、正态分布的计算:()()()X F x P X x μ

σ-=≤=Φ。

2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72)

3、分布函数(,)(,)x y

F x y f u v dudv -∞-∞=??具有以下基本性质:

⑴、是变量x ,y 的非降函数;

⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;

⑷、对于任意的11221212(,),(,),,x y x y x x y y << 

 ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥

4、一个重要的分布函数:1(,)(arctan )(arctan )23

x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布:

边缘概率密度

常见分布的期望与方差的计算

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

常见分布的期望与方差的计算

这些分布的期望和方差要求同学们熟记,以下是计算过程,供课下看。

1.0-1分布

已知随机变量X的分布律为

X

10

p

p1 p

则有

E(X)=1 p+0 q=p,

D(X)=E(X2) [E(X)]

2

=12

p+02

(1 p) p2

=pq.

2.二项分布

设随机变量X 服从参数为n, p 二项分布,

(法一)设Xi为第i 次试验中事件A 发生的次数,i=1,2,",n则

X=∑Xi

i=1

n

n

显然,Xi 相互独立均服从参数为p 的0-1分布,

所以E(X)=∑E(Xi)=np.

i=1

D(X)=∑D(Xi)=np(1 p).

i=1

n

(法二) X的分布律为 n k P{ X= k}= p (1 p )n k, ( k= 0,1,2,", n), k n n n k则有 E ( X )=∑ k P{ X= k}=∑ k p (1 p )n k k=0 k k=0kn!=∑ p k (1 p )n k k= 0 k ! ( n k )! np( n 1)!=∑ p k 1 (1 p )( n 1) ( k 1) k=1 ( k 1)![( n 1) ( k 1)]!n n

( n

分布列、期望与方差(答案)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

2011理数导学案

第十三章 第一节 排列与组合

执笔:李建军 审核:理数学备考小组

【目标与要求】(1)了解排列与组合的定义;

(2)理解排列与组合数的性质,计算简单的排列与组合数; (3)解决与排列与组合有关的应用题。 【回顾与思考】

1.两点分布:对于一个随机试验,如果它的结果只有两种情况,则可以用随机变量??0,1来描述这个随机试验的结果。如果发生的概率为p,则不发生的概率为1?p,这时,称?服从两点分布,其中p称为__________。其分布列为: 期望E??_______;方差D??________。

kn?kCMCN?M2.超几何分布:P(X?k)?,k?0,1,nCN,m,其中m?___________。

3.二项分布:在n次独立重复试验中,事件A发生的次数X服从二项分布,记为_________。

kkn?kP(X?k)?Cnpq(q?1?p,k?0,1,2,…n),表示______________________,二项

分布的分布列为:

X 0 1 … … k … … n P 期望为EX?______________;方差为DX?_________________。 4.正态分布:

(1)正态曲线:如果总体密度

20100414期望和方差

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

概率论课件

第四章 随机变量的数字特征随机变量的概率分布:能完整地描述随机变量的统计规律性。 但在许多情况下,只须知道从不同角度反映随机变量取值特征 的若干个数字就够了,这些数字就称为随机变量的数字特征. 如:评价某地区粮食产量水平——平均产量 评价某批棉花质量——纤维的平均长度、 各纤维长度与平均长度之间的偏离程度

本章将讨论随机变量的 数学期望、方差 协方差及相关系数 方差、协方差 数学期望 方差 协方差 相关系数

概率论课件

4.1 数学期望一、离散型随机变量的数学期望

(mathematical expectation)

某商场计划与五一节在户外搞一次促销 活动,统计资料表明,如果商场内搞促销可获得经 济效益3万元;在商场外搞促销,如果不下雨可获经 济效益12万元,如果下雨则带来经济损失5万元;若 天气预报称当天有雨的概率为40%,则商场如何选择 促销方式?

引例

定义1 设离散型随机变量 X 的分布律为 x1 x2 L xk L X

P则称

E ( X ) = ∑ xk pk (要求此级数绝对收敛)k =1

p1

p2 L pk L

为 X 的数学期望(或均值).

如果级数是条件收敛的,则 它的和与级数中各项的求和 顺序有关.为了避免这种混 乱的局面出现,因

20100414期望和方差

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

概率论课件

第四章 随机变量的数字特征随机变量的概率分布:能完整地描述随机变量的统计规律性。 但在许多情况下,只须知道从不同角度反映随机变量取值特征 的若干个数字就够了,这些数字就称为随机变量的数字特征. 如:评价某地区粮食产量水平——平均产量 评价某批棉花质量——纤维的平均长度、 各纤维长度与平均长度之间的偏离程度

本章将讨论随机变量的 数学期望、方差 协方差及相关系数 方差、协方差 数学期望 方差 协方差 相关系数

概率论课件

4.1 数学期望一、离散型随机变量的数学期望

(mathematical expectation)

某商场计划与五一节在户外搞一次促销 活动,统计资料表明,如果商场内搞促销可获得经 济效益3万元;在商场外搞促销,如果不下雨可获经 济效益12万元,如果下雨则带来经济损失5万元;若 天气预报称当天有雨的概率为40%,则商场如何选择 促销方式?

引例

定义1 设离散型随机变量 X 的分布律为 x1 x2 L xk L X

P则称

E ( X ) = ∑ xk pk (要求此级数绝对收敛)k =1

p1

p2 L pk L

为 X 的数学期望(或均值).

如果级数是条件收敛的,则 它的和与级数中各项的求和 顺序有关.为了避免这种混 乱的局面出现,因

概率论分布列期望方差习题及答案

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆梦教育 离散型随机变量的分布列、期望、方差专题

姓名:__________班级:__________学号:__________

1.红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率;

(Ⅱ)用?表示红队队员获胜的总盘数,求?的分布列和数学期望E?.

12.已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽

3实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.

(1) 第一小组做了三次实验,求实验成功的平均次数;

(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.

第1页 共5页

3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为

概率论分布列期望方差习题及答案

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆梦教育 离散型随机变量的分布列、期望、方差专题

姓名:__________班级:__________学号:__________

1.红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率;

(Ⅱ)用?表示红队队员获胜的总盘数,求?的分布列和数学期望E?.

12.已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽

3实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.

(1) 第一小组做了三次实验,求实验成功的平均次数;

(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.

第1页 共5页

3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为

1-7-2随机变量分布列、期望、方差

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

1-7-2 随机变量分布列、期望、方差

1.在一次考试中,5名同学的数学、物理成绩如下表所示:

学生 数学(x分) 物理(y分) A1 89 87 A2 91 89 A3 93 89 A4 95 92 A5 97 93 (1)根据表中数据,求物理分y对数学分x的回归方程; (2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X).

n

?xi-x??yi-y?^^^^^i∑^-=1附:回归方程y=bx+a中,b=,a=y-bx,其中x,y为样本平n∑ ?xi-x?2=

i1

均数.

2.某学校举行知识竞赛,第一轮选拔共设有1,2,3三个问题,每位参赛者按问题1,2,3的顺序做答,竞赛规则如下:

①每位参赛者计分器的初始分均为10分,答对问题1,2,3分别加1分,2分,3分,答错任一题减2分;

②每回答一题,积分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于12分时,答题结束,进入下一轮;当答完三题,累计分数仍不足12分时,答题结束,淘汰出局.

311

已知甲同学回答1,2,3三个问题正确的概率依次为,,,且各题回答正确与否相

数学期望与方差的运算性质

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

数学期望与方差的运算性质

教程

一:复习公式

离散随机变量(),(,)(,)(,)(,)i j ij i j ij i j

P X Y a b p Eh X Y h a b p ==→=∑

连续随机变量()()()2

,~,(,)(,),R f x y Eg g x y f x y dxdy ξηξη→=??

二:期望运算性质

()E aX bY c aEX bEY c ++=++

应用例题、袋中装有m 个不同色小球,有返回取球n 次,出现X 种不同颜色,求EX 解答:用i X ?=??

1第i颜色球在n次取球中出现0第i颜色球在n次取球中没出现,则 m X X X ++= 1

由于()()1101,111,n n

i i P X P X m m ????==-==-- ? ????? ()111/n

i EX m =--,

()??????????? ??--==++=∑=n m i i m m m EX X X E EX 11111

三、协方差:若,EX EY θμ==,()()cov(,)X Y E X Y θμ=--????称为随机变量X 、Y 的协方差.covariance

()()cov(,)X Y E X Y θμ=--????

()()()()()

()()(

证明样本方差的期望值=总体的方差,即E(S2)=DX

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

证明样本方差的期望值=总体的方差,即E(S2)=DX

设总体为X,抽取n个i.i.d.的样本X1,X2,...,Xn,其样本均值为 Y = (X1+X2+...+Xn)/n

其样本方差为

S =( (Y-X1)^2 + (Y-X2)^2 + ... + (Y-Xn)^2 ) / (n-1) 为了记号方便,我们只看S的分子部分,设为A

则 E A =E( n * Y^2 - 2 * Y * (X1+X2+...+Xn) + (X1^2 + X2^2 +...+ Xn^2)) =E( (X1^2 + X2^2 +...+ Xn^2) - n * Y^2 )

注意 EX1 = EX2 = ... = EXn = EY = EX;

VarX1 = VarX2 = ... = VarXn = VarX = E(X^2) - (EX)^2 VarY = VarX / n (这条不是明显的,但是可以展开后很容易地证出来,而且也算是一个常识性的结论)

所以E A = n(VarX + (EX)^2) - n * (VarY + (EY)^2)

= n(VarX + (EX