概率论与数理统计魏宗舒答案五六

“概率论与数理统计魏宗舒答案五六”相关的资料有哪些?“概率论与数理统计魏宗舒答案五六”相关的范文有哪些?怎么写?下面是小编为您精心整理的“概率论与数理统计魏宗舒答案五六”相关范文大全或资料大全,欢迎大家分享。

概率论与数理统计(魏宗舒)答案

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第一章 事件与概率

1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。 (1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。 解 (1)记9个合格品分别为 正1,正2,?,正9,记不合格为次,则

(正2,正4),?,(正2,正9),(正2,次), ??{(正1,正2),(正1,正3),?,(正1,正9),(正1,次),(正2,正3),(正3,正4),?,(正3,正9),(正3,次),?,(正8,正9),(正8,次),(正9,次)} A?{(正1,次),(正2,次),?,(正9,次)}

(2)记2个白球分别为?1,?2,3个黑球分别为b1,b2,b3,4个红球分别为r1,r2,r3,r4。则??{?1,

?2,b1,b2,b3,r1,r2,r3,r4}(ⅰ) A?{?1,?2} (ⅱ) B?{r1,r2,r3,r4}

1.2 在数学系的学生中任选一名学生,令事件A表示被选学生是男生,事件B表示被选学生是三年级学生,事件C表示该生是运动员。(1) 叙述ABC的意义。(2)在什么条件下ABC?C成立?(3)什么时候关系式C?B是正确

概率论与数理统计答案 魏宗舒

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第七章 假设检验

7.1 设总体??N(?,?2),其中参数?,?2为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设:

(1)H0:??0,??1; (2)H0:??0,??1; (3)H0:??3,??1; (4)H0:0???3; (5)H0:??0.

解:(1)是简单假设,其余位复合假设

7.2 设?1,?2,?,?25取自正态总体N(?,9),其中参数?未知,x是子样均值,如对检验问题

H0:???0,H1:???0取检验的拒绝域:

c?{(x1,x2,?,x25):|x??0|?c},试决定常数c,使检验的显著性水平为0.05

解:因为??N(?,9),故??N(?,在H0成立的条件下,

9) 25P0(|???0|?c)?P(|???035c|?)53

5c???2?1??()??0.053???(5c5c)?0.975,?1.96,所以c=1.176。 3322),?07.3 设子样?1,?2,?,?25取自正态总体N(?,?0已知,对假设检验

c?{(x1,x2,?,xn):|??c0}, H0:???0,H1:???,取临界域0(1)求此检验犯第一类错误概

概率论与数理统计(魏宗舒)答案

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第七章 假设检验

7.1 设总体 N( , 2),其中参数 , 2为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设:

(1)H0: 0, 1; (2)H0: 0, 1; (3)H0: 3, 1; (4)H0:0 3; (5)H0: 0.

解:(1)是简单假设,其余位复合假设

7.2 设 1, 2, , 25取自正态总体N( ,9),其中参数 未知,是子样均值,如对检验问题

H0: 0,H1: 0

取检验的拒绝域:

c {(x1,x2, ,x25):| 0| c},试决定常数c,使检验的显著性水平为0.05 解:因为 N( ,9),故 N( ,在H0成立的条件下,

P0(| 0| c) P(| 0

35c

| )53

5c

2 1 () 0.05

3 9

) 25

(

5c5c

) 0.975, 1.96,所以c=1.176。 33

227.3 设子样 1, 2, , 25取自正态总体N( , 0已知,对假设检验), 0

H0: 0,H1: ,取临界域c {(x1,x2, ,xn):| c0}, 0

(1)求此检验犯第一类错误概率为 时,犯第二类错误的概率 ,并讨论它

概率论与数理统计答案(华东师大魏宗舒版)

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第一章 事件与概率

1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。 (1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。 解 (1)记9个合格品分别为 正1,正2,?,正9,记不合格为次,则

(正2,正4),?,(正2,正9),(正2,次), ??{(正1,正2),(正1,正3),?,(正1,正9),(正1,次),(正2,正3),(正3,正4),?,(正3,正9),(正3,次),?,(正8,正9),(正8,次),(正9,次)} A?{(正1,次),(正2,次),?,(正9,次)}

(2)记2个白球分别为?1,?2,3个黑球分别为b1,b2,b3,4个红球分别为r1,r2,r3,

r4。则??{?1,?2,b1,b2,b3,r1,r2,r3,r4}

(ⅰ) A?{?1,?2} (ⅱ) B?{r1,r2,r3,r4}

1.2 在数学系的学生中任选一名学生,令事件A表示被选学生是男生,事件B表示被选学生是三年级学生,事件C表示该生是运动员。

(1) 叙述ABC的意义。(2)在什么条件下ABC?C成立?(3)什么时候关系式C?B是

概率论与数理统计(魏宗舒版)答案完整版

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

完整答案,免去一章一个文档的干扰!

第一章 事件与概率

1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。 (1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 正1,正2, ,正9,记不合格为次,则

(正2,正4),(正2,正9),(正2,次), , ={(正1,正2), ,(正1,正3),(正1,正9),(正1,次),(正2,正3),

(正3,正4), ,(正3,正9),(正3,次), ,(正8,正9),(正8,次),(正9,次)}

A={(正1,次),(正2,次), ,(正9,次)}

(2)记2个白球分别为ω1,ω2,3个黑球分别为b1,b2,b3,4个红球分别为r1,r2,r3,r4。则 ={ω1,ω2,b1,b2,b3,r1,r2,r3,r4}

(ⅰ) A={ω1,ω2} (ⅱ) B={r1,r2,r3,r4}

1.2 在数学系的学生中任选一名学生,令事件A表示被选学生是男生,事件B表示被选学生是三年级学生,事件C表示该生是运动员。

(1) 叙述ABC的意义。

(2)在什么条件下ABC=C成立? (3)什么

概率论与数理统计教程课后习题解答 魏宗舒

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第三章 连续型随机变量

3.1 设随机变数?的分布函数为F(x),试以F(x)表示下列概率: (1)P(??a);(2)P(??a);(3)P(??a);(4)P(??a) 解:(1)P(??a)?F(a?0)?F(a); (2)P(??a)?F(a?0); (3)P(??a)=1-F(a); (4)P(??a)?1?F(a?0)。 3.2 函数F(x)?11?x2是否可以作为某一随机变量的分布函数,如果

(1)???x???

(2)0?x??,在其它场合适当定义; (3)-??x?0,在其它场合适当定义。

解:(1)F(x)在(-?,?)内不单调,因而不可能是随机变量的分布函数; (2)F(x)在(0,?)内单调下降,因而也不可能是随机变量的分布函数; (3)F(x)在(-?,0)内单调上升、连续且F(??,0),若定义

?F(x)~F(x)???1???x?0x?0则F(x)可以是某一随机变量的分布函数。

3.3 函数sinx是不是某个随机变数?的分布密度?如果?的取值范围为 (1)[0,?2];(2)[0,?];(3)[0,32~?]。

?解:(1)当x?[0,布密度;

?2]时,sinx?0且?2sinx

概率论与数理统计课后习题答案(魏宗舒)1-4章

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第一章 事件与概率

1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。 (1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 正1,正2,?,正9,记不合格为次,则

(正2,正4),?,(正2,正9),(正2,次), ??{(正1,正2),(正1,正3),?,(正1,正9),(正1,次),(正2,正3),(正3,正4),?,(正3,正9),(正3,次),?,(正8,正9),(正8,次),(正9,次)} A?{(正1,次),(正2,次),?,(正9,次)}

(2)记2个白球分别为?1,?2,3个黑球分别为b1,b2,b3,4个红球分别为r1,r2,r3,r4。则??{?1,?2,b1,b2,b3,r1,r2,r3,r4}

(ⅰ) A?{?1,?2} (ⅱ) B?{r1,r2,r3,r4}

1.2 在数学系的学生中任选一名学生,令事件A表示被选学生是男生,事件B表示被选学生是三年级学生,事件C表示该生是运动员。

(1) 叙述ABC的意义。

(2)在什么条件下ABC?C成立? (3)什么时候关系式C?

概率论与数理统计答案

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

习题一

3 设A,B,为二事件,化简下列事件:

(1)(A?B)(A?B)?(AB?BA?B)?(AB?B)?B (2)(A?B)(A?B)?(AA?AB?BA?B)?B

4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。

p?10?9?8?7?6105?72?42104?3024104?0.3024

5 n张奖券中有m张有奖的,k个人购买,每人一张,求其中至少有一人中奖的概率。 答案:1?kCn?mkCn.

6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少? 解;将这五双靴子分别编号分组A?{a1,a2,a3,a4,a5};B?{b1,b2,b3,b4,b5},则

4C表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有C5.

不能配对只能是:一组中选i 只,另一组中选4-i只,且编号不同,其可能选法为

i4?iC5C5?i;(i?4,3,2,1,0)

3113C54?C5C2?C52C32?C5C4?C54 P(C)?1?P(C)?1?4C105?45?4?2??3?5?4?522?1?10?9?8?7? 4?3?2?110?4

概率论与数理统计教程(第二版) 魏宗舒 第一章 - 图文

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第一章 事件与概率

1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。 (1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

(3) 甲、乙两人从装有a个白球与b个黑球的口袋中轮流摸取一球,甲先取,乙后取,每次取后都有不放回,直到两人中有一人取到白球时停止,甲先取到白球。

解 (1)记9个合格品分别为 正1,正2,?,正9,记不合格为次,则

(正2,正4),?,(正2,正9),(正2,次), ??{(正1,正2),(正1,正3),?,(正1,正9),(正1,次),(正2,正3),(正3,正4),?,(正3,正9),(正3,次),?,(正8,正9),(正8,次),(正9,次)}

A?{(正1,次),(正2,次),?,(正9,次)}

(2)记2个白球分别为?1,?2,3个黑球分别为b1,b2,b3,4个红球分别为r1,r2,r3,r4。则??{?1,?2,b1,b2,b3,r1,r2,r3,r4}

(ⅰ) A?{?1,?2} (ⅱ) B?{r1,r2,r3,r4}

b个???(3)?1表示白,?2表示黑白,?3表示黑黑白,…?b

概率论与数理统计

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

《概率论与数理统计》课程论文

浅谈概率论的思想发展及应用

能源科学与工程学院

于晓滢 1130240415

哈尔滨工业大学

摘 要

概率论是一门历史悠久的学科,关于它的起源众说纷纭,不过大家都承认的是,概率论是研究偶然、随机现象的规律性的数学理论,它拥有着自己独立的研究问题和有代表性的思想方法,并在现代生活的多个方面发挥着作用,拥有着不可替代的地位。本文将总结概率论中所应用的几种典型思想方法及演变,并陈述概率论在当代生活中的几种必要应用,让我们对这一学科有一个更深刻的了解。

I

目 录

摘 要 ................................................................................................................................................. I 第1章 概率论的诞生 ..................................................................................................................... 1