高中数学投影定理公式
“高中数学投影定理公式”相关的资料有哪些?“高中数学投影定理公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学投影定理公式”相关范文大全或资料大全,欢迎大家分享。
高中数学公式-定理-复习指南
篇一:高一数学公式·定理复习资料大全
2012年高一暑假数学复习内容
必修5
第一章:解三角形
掌握:正弦定理:
abc
???2R.(R为?ABC外接圆的半径,). sinAsinBsinC
?a?2RsinA,b?2RsinB,c?2RsinC?a:b:c?sinA:sinB:sinC
b2?c2?a2
余弦定理:a?b?c?2bccosA?cosA?;
2bc
2
2
2
a2?c2?b2
b?c?a?2cacosB?cosB?;
2ac
2
2
2
a2?b2?c2
c?a?b?2abcosC?cosC?
2ab
2
2
2
面积公式:⑴S?⑵S?
111
aha?bhb?chc(ha、hb、hc分别表示a、b、c边上的高). 222
111
absinC?bcsinA?casinB 222
两角和差公式:sin(???)?sin?cos??cos?sin?;
cos(???)?cos?cos??sin?sin?;
倍角公式:sin2??sin?cos?;cos2??cos2??sin2??2cos2??1?1?2sin2?; 降幂扩角公式:cos2??
1?cos2?1?cos2?1
;sin2??;sin?cos??sin2? 222
sin?
cos?
同角三角函数关系式:sin2??cos2??1,t
高中数学公式定理记忆口诀大全
中小学1对1全托管辅导权威教育机
构!
金博教育官网:7259d4976bd97f192279e9d8 ----------------------------------------------咨询热线:
400-8383-881 金博教育分校:中关村校区/西直门校区/公主坟校区/东直门校区/宣武门校区/劲松校区/望京校区 高中数学公式定理记忆口诀大全
《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X 是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形
16年高中数学公式定理记忆口诀
16年高中数学公式定理记忆口诀
第一次工业革命,人类发明了蒸汽机,没有数学又哪里会有现在先进的汽车自动化生产线。小编准备了高中数学公式定理记忆口诀,具体请看以下内容。
《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非边增减变故。
函数定义域好求。分母不能等于负数无对数;
正切函数角不直,余切函数角不平情况求交集。
1的正数,1两0,偶次方根须非负,零和;其余函数实数集,多种
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关
系是对角,
顶点任意一函数,等于后面两根除。诱
高中数学公式汇总
1. 2.3.4.集合
个.
,.
.
的子集个数共有
个;真子集有
个;非空子集有
个;非空的真子集有
5.二次函数的解析式的三种形式 (1)一般式(2)顶点式(3)零点式4切线式:设为此式 6.解连不等式
常有以下转化形式
;
;当已知抛物线的顶点坐标
时,设为此式
时,设为此式
时,
;当已知抛物线与轴的交点坐标为
。当已知抛物线与直线
相切且切点的横坐标为
.
7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值 二次函数具体如下: (1)当a>0时,若
,则
;
在闭区间
上的最值只能在
处及区间的两端点处取得,
,,.
(2)当a<0时,若,则,
若
9.一元二次方程
,则,
=0的实根分布
1
.
1方程2方程
在区间在区间
内有根的充要条件为内有根的充要条件为
或;
或或;
3方程在区间内有根的充要条件为或 .
10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间
的子区间形如
。
的子区间
。
(3) 在给定区间
。
(4) 在给定区间
。
对于参数及函数若若函数11.真值表 p q 真 真 真 假 假 真 假 假
2
,,不同上含参数的不等式(为参
数)恒成立的充要条件是(2)在给定区间
上含参数的不等式(为参数)恒成立的充要条件是
的子区间上
《高中数学常用公式总结》
《高中数学常用公式总结》 1、元素与集合的关系 2 、集合
的子集个数共有
个;真子集有 个.
个;
非空子集有个;非空的真子集有
3 、二次函数的解析式的三种形式: (1) 一般式: (2) 顶点式 : 坐标
时,设为此式)
(当已知抛物线与轴的交
时,设为此式)
。(当已知抛物线与直
(当已知抛物线的顶点
(3) 零点式: 点坐标为 (4)切线式: 线
相切且切点的横坐标为 时,
设为此式)
4、 真值表: 同真且真,同假或假
5 、常见结论的否定形式;
6 、四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)
充要条件: (1) 要条件;
(2)
且q ≠> p,则P是q的充分不必要条件;
,则P是q的必要不充分条
则P是q的充分条件,反之,q是p的必
(3) p ≠> p ,且 件;
(4)p ≠> p ,且
则P是q的既不充分又不必要条件。
7、 函数单调性:
增函数:(1)文字描述是:y随x的增大而增大。 (2)数学符号表述是:设f(x)在 若对任意的 则就叫
减函数:(1)、文字描述是:y随x的增大而减小。
高中数学公式汇总
皖西学院 计算机网络 程 坤
高中数学第一章-集合
榆林教学资源网 http://www.ylhxjx.com 考试内容:
集合、子集、补集、交集、并集.
逻辑联结词.四种命题.充分条件和必要条件. 考试要求: 榆林教学资源网 http://www.ylhxjx.com
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
§01. 集合与简易逻辑 知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:
①任何一个集合是它本身的子集,记为A?A; ②空集是任何集合的子集,记为??A; ③空集是任何非空集合的真子集; 如果A?B,同时B?A,那么A = B. 如果A?B
高中数学公式大全
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8
高中数学公式大全
高中数学常用公式及常用结论
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8
高中数学联赛常用定理
常用定理
1、费马点 (I)基本概念
定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。 (1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。
(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。
(II)证明
我们要如何证明费马点呢:
费马点证明图形
(1)费马点对边的张角为120度。
△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P
由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1
将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度
又∠BPA=120度,因此A、P、D三点在同一直线上,
又∠CPB=∠A1DB=120度,∠PDB=60度,∠P
高中数学联赛常用定理
常用定理
1、费马点
(I)基本概念
定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。
(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。
(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。
(II)证明
我们要如何证明费马点呢:
)
费马点证明图形
(1)费马点对边的张角为120度。
△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,
△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B
同理可得∠CBP=∠CA1P
由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度
同理,∠APB=120度,∠APC=120度
、
(2)PA+PB+PC=AA1
将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度
又∠BPA=120度,因此A、P、D三点在同一直线上,
又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。
(3)PA+PB+PC