数学圆锥曲线解题技巧视频

“数学圆锥曲线解题技巧视频”相关的资料有哪些?“数学圆锥曲线解题技巧视频”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学圆锥曲线解题技巧视频”相关范文大全或资料大全,欢迎大家分享。

圆锥曲线解题技巧经典实用

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

v1.0 可编辑可修改

1 1 圆锥曲线―概念、方法、题型、及应试技巧总结

1.圆锥曲线的两个定义:

(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .

421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C )

; (2

方程8=表示的曲线是_____(答:双曲线的左

支)

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心

圆锥曲线解题技巧和方法综合(全)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

圆锥曲线的解题技巧

一、常规七大题型:

(1)中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),

(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意

斜率不存在的请款讨论),消去四个参数。

x2y2如:(1)2?2?1(a?b?0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有

abx0y0?2k?0。 2abx2y2 (2)2?2?1(a?0,b?0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有

abx0y0?2k?0 2ab(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

y2 典型例题 给定双曲线x?过A(2,1)的直线与双曲线交于两点P1 及P2,?1。

22求线段P1P2的中点P的轨迹方程。

(2)焦点三角形问题

椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。

x2y2 典型例题 设P(x,y)为椭圆2?2?1上任一点,F1(?c,0),F2(c,0)为焦点,

ab?PF1F2??,?PF2F1

圆锥曲线解题技巧和方法综合(经典)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

圆锥曲线解题方法技巧归纳

第一、知识储备: 1. 直线方程的形式

(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容 ①倾斜角与斜率k?tan?,??[0,?) ②点到直线的距离d?tan??k2?k11?k2k1Ax0?By0?CA?B22 ③夹角公式:

(3)弦长公式

直线y?kx?b上两点A(x1,y1),B(x2,y2)间的距离:AB?1?k2x1?x2

?(1?k2)[(x1?x2)2?4x1x2] 或AB?1?1y1?y2 2k(4)两条直线的位置关系

①l1?l2?k1k2=-1 ② l1//l2?k1?k2且b1?b2 2、圆锥曲线方程及性质

(1)、椭圆的方程的形式有几种?(三种形式)

x2y2 标准方程:??1(m?0,n?0且m?n)

mn 距离式方程:(x?c)2?y2?(x?c)2?y2?2a 参数方程:x?acos?,y?bsin? (2)、双曲线的方程的形式有两种

x2y2 标准方程:??1(m?n?0)

mn 距离式方程:|(x?c)2?y2?(x?c)2?y2|?2a (3)、三种圆锥曲线的通径你记得吗?

2b22b22p

圆锥曲线解题技巧和方法综合(全)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

圆锥曲线的解题技巧

一、常规七大题型:

(1)中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),

(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意

斜率不存在的请款讨论),消去四个参数。

x2y2如:(1)2?2?1(a?b?0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有

abx0y0?2k?0。 2abx2y2 (2)2?2?1(a?0,b?0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有

abx0y0?2k?0 2ab(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

y2 典型例题 给定双曲线x?过A(2,1)的直线与双曲线交于两点P1 及P2,?1。

22求线段P1P2的中点P的轨迹方程。

(2)焦点三角形问题

椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。

x2y2 典型例题 设P(x,y)为椭圆2?2?1上任一点,F1(?c,0),F2(c,0)为焦点,

ab?PF1F2??,?PF2F1

圆锥曲线解题方法技巧总结(附答案)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

姓名 学科 数学 学生姓名 年级 高二 填写时间 教材版本 第( )课时 共( )课时 2013-12-29 人教版 阶段 第( 1 )周 观察期:□ 维护期:□ 课题圆锥曲线解题方法技巧总结 名称 教学大纲教学目标 目标 个性化教学目标 课时计划 上课时间 2014-1-3 圆锥曲线知识点及题型回顾整理 培养学生分析能力和逻辑思维能力. 教学圆锥曲线知识点的综合应用 重点 教学 掌握圆锥曲线的综合问题的处理方法 难点 第一部分:知识梳理 名 称 椭圆 图 象 双曲线 定 义 教学过程 平面内到两定点常数(大于圆即的距离的和为平面内到两定点对值为常数(小于迹叫双曲线即的距离的差的绝)的动点的轨 )的动点的轨迹叫椭 当2﹥2时,轨迹是 当2﹤2时,轨迹是 当2=2,轨迹是 当2﹤2时,轨迹 当2=2时,轨迹是 当2﹥2时,轨迹 焦点在轴上时: 标准方 程 注:根据 判断焦点在哪一坐标

圆锥曲线解题方法技巧总结(附答案)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

姓名 学科 数学 学生姓名 年级 高二 填写时间 教材版本 第( )课时 共( )课时 2013-12-29 人教版 阶段 第( 1 )周 观察期:□ 维护期:□ 课题圆锥曲线解题方法技巧总结 名称 教学大纲教学目标 目标 个性化教学目标 课时计划 上课时间 2014-1-3 圆锥曲线知识点及题型回顾整理 培养学生分析能力和逻辑思维能力. 教学圆锥曲线知识点的综合应用 重点 教学 掌握圆锥曲线的综合问题的处理方法 难点 第一部分:知识梳理 名 称 椭圆 图 象 双曲线 定 义 教学过程 平面内到两定点常数(大于圆即的距离的和为平面内到两定点对值为常数(小于迹叫双曲线即的距离的差的绝)的动点的轨 )的动点的轨迹叫椭 当2﹥2时,轨迹是 当2﹤2时,轨迹是 当2=2,轨迹是 当2﹤2时,轨迹 当2=2时,轨迹是 当2﹥2时,轨迹 焦点在轴上时: 标准方 程 注:根据 判断焦点在哪一坐标

文科数学高考压轴题(圆锥曲线)解题策略1

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

攸县高考数学(文科)研究材料(二):

高考数学压轴题---圆锥曲线

解题策略及常考题型

圆锥曲线问题将几何与代数知识有机结合在一起,较好地考察了学生的数学思维和创新,灵

活处理问题的能力,是高考命题的热点之一.高考中要做好圆锥曲线这道大题,我们还需要一定的解题策略 ,并通过自己不断地领悟和练习提高自己的解题能力.

一、圆锥曲线知识要点及解题方法

圆锥曲线解题的本质就是将题干中的条件和图形中隐含的几何特征转化成等式或不等式,最后通过代数运算解决问题,而其中的关键是怎样转化或构造不等式。其常考查的知识点可以归纳如下:

1、抓住定义构造等式,定义是圆锥曲线的核心和根本,涉及焦点时,优先利用定义解决问题。 2、抓住题中特殊几何关系来构造等式或应用几何关系使解题简化,运用“重几何,轻代数”观念处理问题。

①内心:1、三条角平分线交点; 2、角平分线上的点到两边距离相等; 3、切线长定理; 4、面积法(S△ABI+S△ACI+S△BCI=S△ABC) ②重心:1、中线交点; 2、AH=2HD,H为重心; ③垂心:三条高线交点(可用垂直构造等式)

④外心:垂直平分线交点(垂直平分线的性质构造等式)

文科数学高考压轴题(圆锥曲线)解题策略1

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

攸县高考数学(文科)研究材料(二):

高考数学压轴题---圆锥曲线

解题策略及常考题型

圆锥曲线问题将几何与代数知识有机结合在一起,较好地考察了学生的数学思维和创新,灵

活处理问题的能力,是高考命题的热点之一.高考中要做好圆锥曲线这道大题,我们还需要一定的解题策略 ,并通过自己不断地领悟和练习提高自己的解题能力.

一、圆锥曲线知识要点及解题方法

圆锥曲线解题的本质就是将题干中的条件和图形中隐含的几何特征转化成等式或不等式,最后通过代数运算解决问题,而其中的关键是怎样转化或构造不等式。其常考查的知识点可以归纳如下:

1、抓住定义构造等式,定义是圆锥曲线的核心和根本,涉及焦点时,优先利用定义解决问题。 2、抓住题中特殊几何关系来构造等式或应用几何关系使解题简化,运用“重几何,轻代数”观念处理问题。

①内心:1、三条角平分线交点; 2、角平分线上的点到两边距离相等; 3、切线长定理; 4、面积法(S△ABI+S△ACI+S△BCI=S△ABC) ②重心:1、中线交点; 2、AH=2HD,H为重心; ③垂心:三条高线交点(可用垂直构造等式)

④外心:垂直平分线交点(垂直平分线的性质构造等式)

范文桥总结圆锥曲线的解题全面方法

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

高中数学圆锥曲线解答题解法面面观

汇编:范文桥

圆锥曲线解答题中的十一题型:几乎全面版 题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题

题型四:过已知曲线上定点的弦的问题 题型五:向量问题 题型六:面积问题

题型七:弦或弦长为定值、最值问题 问题八:直线问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)

题型一:数形结合确定直线和圆锥曲线的位置关系(简单题型未总结)

题型二:弦的垂直平分线问题

例题1、过点T(-1,0)作直线l与曲线N :B两点,在x轴上是否存在一点E(x0,0),使得?ABEy2?x交于A、是等边三角形,若存在,求出x0;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。

设直线l:y?k(x?1),k?0,A(x1,y1),B(x2,y2)。 由??y?k(x?1)2222消y整理,得kx?(2k?1)x?k?0 ① 2?y?x由直线和抛物线交于两点,得??(2k2?1)2?4k4??4k2?1?0 即0?k?21

范文桥总结圆锥曲线的解题全面方法

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

高中数学圆锥曲线解答题解法面面观

汇编:范文桥

圆锥曲线解答题中的十一题型:几乎全面版 题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题

题型四:过已知曲线上定点的弦的问题 题型五:向量问题 题型六:面积问题

题型七:弦或弦长为定值、最值问题 问题八:直线问题 问题九:对称问题 问题十、存在性问题:(存在点,存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)

题型一:数形结合确定直线和圆锥曲线的位置关系(简单题型未总结)

题型二:弦的垂直平分线问题

例题1、过点T(-1,0)作直线l与曲线N :B两点,在x轴上是否存在一点E(x0,0),使得?ABEy2?x交于A、是等边三角形,若存在,求出x0;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。

设直线l:y?k(x?1),k?0,A(x1,y1),B(x2,y2)。 由??y?k(x?1)2222消y整理,得kx?(2k?1)x?k?0 ① 2?y?x由直线和抛物线交于两点,得??(2k2?1)2?4k4??4k2?1?0 即0?k?21