指数运算与指数函数的知识点思维导图
“指数运算与指数函数的知识点思维导图”相关的资料有哪些?“指数运算与指数函数的知识点思维导图”相关的范文有哪些?怎么写?下面是小编为您精心整理的“指数运算与指数函数的知识点思维导图”相关范文大全或资料大全,欢迎大家分享。
指数及指数函数知识点和练习
v1.0可编辑可修改
x
(2)分数指数幂的概念
(3 )分数指数幂的运算性质
①a r a s a r s(a 0,r,s R)②(a r)s a rs(a 0, r, s R)
③(ab)r a r b r(a 0,b 0, r R)
【2.1.2】指数函数及其性质
函数名称指数函数
定义函数y a x(a 0 且a1)叫做指数函数
图象 a 10 a 1 1
、
根式n a
当n是奇数
时,
当n是偶数
时,
第五讲指数和指数函数
(一般的,如果x n a,那么x叫做a的n次方根,其中n
0的任何次方根都是
2
、
正数的n次方根是正数
负数的n次方根是负数
正数的n次方根有2个,
负数没有偶次方根
0,记作n 0
ya7的讨论当n是奇数时,,ya7 a ;
如3 32 5
如5 5
且互为相反数如:
当n是偶数时,n^
0,则n次方根为a
a,a 0
a, a 0
①正数的正分数指数幂的意义是:
n/(a 0,m, n N ,
且n 1).0的正分数指数幂等于0.
②正数的负分数指数幂的意义是: ,且n 1) . 0的负分数
指数幂没有意义. 注意口诀: 底数取倒数,指数取相反数.
.1 . m .
(;)(a 0,m,n
O O
v1.0可编辑可修改
2
指数及指数函数知识点及习题
指数及指数函数
(一)指数与指数幂的运算
1.根式的概念
一般地,如果xn a,那么x叫做a的n次方根,其中n>1,且n∈N*.
当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此
时,a的n次方根用符号a表示.
式子a叫做根式,这里n叫做根指数,a叫做被开方数.
当n是偶数时,正数的n次方根有两个,这两个数互为相反数.此时,正数a的正的n次方根用符号a表示,负的n次方根用符号-a表示.正的n次方根与负的n次方根可以合并成±a(a>0).
由此可得:负数没有偶次方根;0的任何次方根都是0,记作0 0. 结论:当n是奇数时,an a
a(a 0)当n是偶数时,an |a|
a(a 0)
2.分数指数幂
a am(a 0,m,n N*,n 1)
mn
a
mn
1
mn
1
a
0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)ar·ar ar s (2)(ar)s ars
(a 0,r,s Q);
am
(a 0,m,n N*,n 1)
(a 0,r,s Q);
(3)(ab)r aras (一)指数函数的概念
(a 0,b 0,r Q).
一般地,函数y ax(a 0,且a 1)叫做指数函数,其中x是自
指数运算和指数函数
第五讲 指数运算和指数函数
一、知识点
1.根式的性质
nan?
2.幂的有关概念
(1)正整数指数幂:an?a??a??a.............a(n?N?) ?????n?p(2)零指数幂a?1(a?0) (3)负整数指数幂 a?01(a?0.p?N?) pa(4)正分数指数幂 amn?nam(a?0,m,n?N?,且n?1)
mn(5)负分数指数幂 a??1amn(a?0,m,n?N?,且n?1)
(6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)a?a?arrrsr?s,(a?0,r,s?Q) (2)(ar)s?ars,(a?0,r,s?Q)
s (3)(ab)?a?a,(a?0,b?0,r?Q)
4.指数函数定义:函数y?a(a?0且a?1)叫做指数函数。 5. 指数函数的图象和性质
xy?ax 0 < a < 1 a > 1 图 象 定义域 性 质 值域 定点 单调性 对称性 y?ax和y?a?x关于 对称
1.函数y?(x?5)0?(x?2)
?12
( )
A.{x|x?5,x?2}
指数函数与对数函数知识点总结
关于 高中基本函数 的教学讲义
预计课时:2 学生姓名: 指导教师:
(一)指数函数
指数:
(1) 规定:
① a0= (a≠0); ② a-p= ; ③ a? n a m ( a ? 0 , m . (2) 运算性质:
rsr?sa① a?a? a ( ? 0 , (a>0, r、s?Q) rsr?sa)?,② ( a ( a ? 0 (a>0, r、s?Q) rrra?b)?bb?0,r、s?Q) ③ ( a ? ( a ? 0 , (a>0, r
mn注:上述性质对r、s?R均适用.
2.指数函数:
① 定义:函数y=a(a>0,a≠0)称为指数函数 1) 函数的定义域为 ; 2) 函数的值域为 ;
3) 当________时函数为x增大y减小,当_______时为x增大y增大函数.
② 函数图像:
a>1 0
4433221111-4-20-1246-4-2 0-1246 定义域 R 值域y>0 在R上单调递增 非奇非偶函数 函数图象都
2.6 指数与指数函数
指数与指数函数
要点梳理1. 根式的概念根式的概念
忆一忆知识要点
符号表示
备注
如果xn=a,那么 x 叫做 a 的n次方根. n为奇数时,正数的奇 次方根是正数;负数的奇次 方根是负数. n为偶数时,正数的偶 次方根有两个且互为相反 数.n
n>1,且 n∈N*.
a
零的n次方根是零
n a (a 0) 负数没有偶次方根
要点梳理2. 两个重要公式
忆一忆知识要点
公式 (1) ( a ) a.n n
适用范围: ①当n为大于1的奇数时, a∈R.
②当n为大于1的偶数时, a≥0.公式 (2)n
a , n 2k 1, k N , a = | a |, n 2k , k N .
n
要点梳理3. 幂的有关概念 幂指数 正整数 指数
忆一忆知识要点
a a a a n
定义
条件
零指数 负整数 指数 正分数 指数 负分数 指数
a 10
n个a
n N ,a R
a 0n N ,a 0 m
a 1n a n
aa m n
m n
n
an
a>0,m,n N*,n>1a>0,m,n N*,n>1
1 m an
1 am
规定: 0的正分数指数幂为0, 0的负分数指数幂没有
指数对数与幂函数(思维导图)
1、底数对图像的影响
2、平移变换对图像的影响1、底数对图像的影响
2、平移变换对图像的影响
1、先观察底数a与1大小,不确定时要分类讨论1、先观察底数a与1大小,不确定时要分类讨论
1
1
1
(六)指数函数
1.幂的有关概念
正整数指数幂:=??
n
a a a a n a ; 零指数幂:0a =1( ) ;
负整数指数幂:p a -= (0,a p N +≠∈); 正分数指数幂:m n a =
(0,1a m n N n +>∈>、且); 负分数指数幂:m
n a -=
(0,1a m n N n +>∈>、且);
0的正分数指数幂等于 ,0的负分数指数幂
2.幂的运算法则(0,0,a b r s Q >>∈、)
r s a a = ;()r s a = ;()r ab =
3.指数函数图像及性质
1
4.指数函数()x f x a =具有性质:
()()()(),1(0,1)f x y f x f y f a a a +==>≠
(七)对数函数
1.定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是b a N =,那么数b 称以a 为底N 的对数,记作log a b N =,其中a 称对数的底,N 称真数.
指数函数和对数函数知识点总结
适用于高一应届学习及高三一轮复习
指数函数和对数函数知识点总结及练习题
一.指数函数
(一)指数及指数幂的运算
a am ar as ar s (ar)s ars (ab)r arbr
(二)指数函数及其性质
1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。
x
mn
二.对数函数
(一)对数
1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。 2.指数式与对数式的互化
幂值 真数
x
ax log
指数 对数
适用于高一应届学习及高三一轮复习
3.两个重要对数
(1)常用对数:以10为底的对数lgN
(2)自然对数:以无理数e 2.71828 为底的对数lnN
(二)对数的运算性质(a 0且a 1,M 0,N 0) ①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb
(三)对数函数
1.对数函数的概念:形如y logax(a
2.4 指数与指数函数
§2.4 指数与指数函数
(时间:45分钟 满分:100分)
一、选择题(每小题7分,共35分)
1.下列等式3
6a 3=2a ;3-2=6(-2)2;-342=4(-3)4×2中一定成立的有( )
A .0个
B .1个
C .2个
D .3个
2.把函数y =f (x )的图象向左、向下分别平移2个单位长度得到函数y =2x 的图象,则( )
A .f (x )=2x +
2+2
B .f (x )=2x +
2-2
C .f (x )=2x -2+2
D .f (x )=2x -
2-2
3.函数y =a |x |(a >1)的图象是( )
4.函数f (x )=a x
-b
的图象如图所示,其中a 、b 为常数,则下列结论正确的 是
( )
A .a >1,b <0
B .a >1,b >0
C .00
D .0
5.设232
555
322(),(),()555
a b c ===,则a ,b ,c 的大小关系是 ( )
A .a >c >b
B .a >b >c
C .c >a >b
D .b >c >a
二、填空题(每小题6分,共24分)
6.已知函数f (x )=|2x -1|,a f (c )>f (b ),则下列结论中,一定成立的是________. ①
《指数函数》
4.2.1 指数函数及其图像与性质
【教学目标】 1.知识与技能目标:
使学生理解指数函数的定义、图象及性质,培养学生正确使用几何画板工具。 2.过程与方法目标:
在实验活动过程中引领学生主动探索指数函数性质,启动观察、分析、归纳、总结、抽象概括等思 维活动,培养学生的思维能力,体会学习数学规律的方法。 3.情感态度与价值观:
让学生感受数学问题探索的乐趣,体验成功的喜悦,体会辨证的思维及数学图形的和谐美。
【教学重、难点】
教学重点:理解指数函数的定义、图象及性质。 教学难点:指数函数性质的归纳与运用。
【教学方法】
我校汽修专业的学生数学基础比较薄弱,学生对数学普遍不感兴趣。本节课概念性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。因此本节课主要采用数学实验教学活动的方法,通过结合计算机软件工具,让学生在实验活动过程中来去体验、感悟知识,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。
【教学过程】 1.流程 (1)教学流程:
创设情境 激发兴趣引出新知 形成概念深入探究 引导发现巩固提高 灵活运用归纳总结 新知梳理分层作业共同提高
§2.4指数与指数函数
§2.4指数与指数函数
基础自测
1. 已知a<,则化简的结果是 . 答案
2.设指数函数f(x)=ax(a>0且a≠1),则下列等式正确的有 (填序号). ①f(x+y)=f(x)·f(y) ②f(xy)n=f n(x)·f n(y)
③f(x-y)= ④f(nx)=f n(x) 答案 ①③④
3.函数f(x)=ax-b的图象如图所示,其中a、b为常数,则下列结论不正确的有 (填序号).
①a>1,b<0 ②a>1,b>0 ③0<a<1,b>0 ④0<a<1,b<0 答案 ①②③
4.关于函数f(x)=2x-2-x(x∈R),有下列三个结论: ①f(x)的值域为R;
②f(x)是R上的增函数;
③对任意x∈R,有f(-x)+f(x)=0成立.