数学建模案例分析
“数学建模案例分析”相关的资料有哪些?“数学建模案例分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学建模案例分析”相关范文大全或资料大全,欢迎大家分享。
层次分析数学建模案例 - 图文
1
基于层次分析法的护岸框架最优方案选择
【摘要】长期以来,四面六边透水框架在河道整治等工程中,因其取材方便、自身稳定性、透水性、阻水性好、适合地形变化等特性优点而被广泛的应用。但是,在抛投和使用过程中,存在被水流冲击而翻滚移位、结构强度的不足、难以合理互相钩连的问题,使框架群不能达到理想的堆砌效果。本文主要探讨如何合理设计改进现有护岸框架,以最大程度减少框架群被水流冲击翻滚移位的情况,增加框架群在使用过程中互相钩连程度和结构强度,达到减速促淤效果。
针对问题,我们结合四面六边透水框架本身的优势特性,在原有框架的基础上进行改进设计,根据三角形稳定性的特性,通过应用机理分析,进行物理图形构造,设计出三种供选方案。
模型一:构建四面六边带触脚框架模型(图5.2),该模型在四面六边透水框架的基础上,运用触脚设计,较好的融合增强四面六边透水框架本身的优点特性,使框架达到不易翻滚,并与其他的框架自然地相互钩连。
模型二:构建六面九边带触脚框架模型(图5.6),该模型是对模型一的改进,综合模型一和原型模型的结构,不仅具备良好的亲水性、阻水性和稳定性,而且触脚比模型一更多,使框架更加稳定,不易翻滚、框架群之间也更容易钩连;同时,模型二施工简单,更容易构造
数学建模案例分析 6.选址问题
数学建模
出版社销售代理点的选择模型
摘要:
本文主要是为了解决出版社准备在某市建立两个销售代理点,向七个区的大学生售书,
知道每个区的大学生人数(千人)和每个区的位置关系,如图一,每个销售代理点只能向本区和一个相邻区的大学生售书,建立模型确定销售代理点的位置,使得能供应的大学生的数量最大。
我们建立了一个整数线性规划模型,确定决策变量:x12,x13,x23,x24,x34,x25,(i,j)区的大学生由一个销售代理点供应,否则xij?0,x45,x46,x47,x56,x67,xij?1表示
写出目标函数,确定约束条件。用lindo软件求解,的到的最优解:max?177, x25?1,
x47?1。对图一得各区进行标号,见图二,说明2和5区的大学生由一个销售代理点供应,
4和7区的大学生由一个销售代理点供应,该出版社能供应的大学生的最大数量为177千
人。此整数线性规划模型在地区小的范围和销售代理点少的情况小无疑是一个很好的模型,但要在比较大的市场上来选在较多的代理点的话还得考虑其他更好的方案。
关键字:整数线性规划模型 lindo软件
1 问题重述
随着现在社会的进步,人民生活水平的提高,市场的公司也是越做越大,销售代理点也是越来越多
数学建模之钢管下料问题案例分析
钢管下料问题
某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是19m。
(1)现在一客户需要50根4m、20根6m和15根8m的钢管。应如何下料最节省?
(2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。此外,该客户除需要(1)中的三种钢管外,还需要10根5m的钢管。应如何下料最节省。
问题(1)分析与模型建立
首先分析1根19m的钢管切割为4m、6m、8m的钢管的模式,所有模式相当于求解不等式方程:
4k1?6k2?8k3?1 9的整数解。但要求剩余材料r?19?(4k1?6k2?8k3)?4。 容易得到所有模式见表1。
表1 钢管切割模式 模式 1 2 3 4 5 6 7 决策变量 用xi表示按照第i种模式(i=1,2,…,7)切割的原料钢管的根数。
以切割原料钢管的总根数最少为目标,则有
minz?x1?x2?x3?x4?x5?x6?x7 约束条件 为满足客户的需求,4米长的钢管至少50根,有
4m 4
数学建模案例分析-- - 模糊数学方法建模1模糊综合评判及其应用
模糊数学方法建模
§1 模糊综合评判及其应用
一、模糊综合评判
在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。 综合评判最简单的方法有两种方式:
一种是总分法,设评判对象有m个因素,我们对每一个因素给出一个评分si,计算出评判对象取得的分数总和
S??si?1mi
按S的大小给评判对象排出名次。例如体育比赛中五项全能的评判,就是采用这种方法。 另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令ai表示对第i个因素的权重,并规定
?ai?1mi?1,于是用
m S??asi?1ii
按S的大小给评判对象排出名次。
以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评
数学建模案例分析-- - 模糊数学方法建模1模糊综合评判及其应用
模糊数学方法建模
§1 模糊综合评判及其应用
一、模糊综合评判
在我们的日常生活和工作中,无论是产品质量的评级,科技成果的鉴定,还是干部、学生的评优等等,都属于评判的范畴。如果考虑的因素只有一个,评判就很简单,只要给对象一个评价分数,按分数的高低,就可将评判的对象排出优劣的次序。但是一个事物往往具有多种属性,评价事物必须同时考虑各种因素,这就是综合评判问题。所谓综合评判,就是对受到多种因素制约的事物或对象,作出一个总的评价。 综合评判最简单的方法有两种方式:
一种是总分法,设评判对象有m个因素,我们对每一个因素给出一个评分si,计算出评判对象取得的分数总和
S??si?1mi
按S的大小给评判对象排出名次。例如体育比赛中五项全能的评判,就是采用这种方法。 另一种是采用加权的方法,根据不同因素的重要程度,赋以一定的权重,令ai表示对第i个因素的权重,并规定
?ai?1mi?1,于是用
m S??asi?1ii
按S的大小给评判对象排出名次。
以上两种方法所得结果都用一个总分值表示,在处理简单问题时容易做到,而多数情况下评
数学建模案例 - 最佳捕鱼方案
最佳捕鱼方案
? 会。
2012年 数学建模联赛
承 诺 书
我们仔细阅读了 数学建模联赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为: 参赛队员 (打印并签名) :1. 2. 3.
数学建模案例之线性规划
线性规划
数学建模案例之线性规划 奶制品的生产与销售
2010.10
线性规划
引优化问题及其一般模型:
言
优化问题是人们在工程技术、经济管理和科学研究等领域中 最常遇到的问题之一。例如: 设计师要在满足强度要求等条件下选择材料的尺寸, 使 结构总重量最轻; 公司经理要根据生产成本和市场需求确定产品价格,使所获 利润最高; 调度人员要在满足物质需求和装载条件下安排从各供应点 到需求点的运量和路线,使运输总费用最低; 投资者要选择一些股票,债券下注,使收益最大,而风险最小 …………
线性规划
引
言
一般地,优化模型可以表述如下:
min z f ( x ) s.t . gi ( x ) 0 ,= 1, , i 2, m这是一个多元函数的条件极值问题,其中 x = [ x 1 , x 2 , … , x n ]。
许多实际问题归结出的这种优化模型,但是其决策变量个数 n 和约束条件个数 m 一般较大,并且最优解往往在可行域的边界上取得,这样就不 能简单地用微分法求解,数学规划就是解决这类问题的有效方法。
线性规划
引数学规划模型分类:
言
“数学规划是运筹学和管理科学中应用及其广泛的分支。在许多情况下, 应用数学规划取得的如此成功,以致它的用途
数学核心素养之数学建模教学案例
数学核心素养之数学建模教学案例
1引言:新修订的高中数学课程提出,数学核心素养是数学课程目标的集中体现,是具有数学基本特征、适应个人终身发展和社会发展需要的必备品格与关键能力。高中数学核心素养主要包括:数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。
其中,对于数学建模,详细描述为数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力。
在数学建模核心素养的形成过程中,积累用数学解决实际问题的经验。学生能够在实际情境中发现和提出问题;能够针对问题建立数学模型;能够运用数学知识求解模型,并尝试基于现实背景验证模型和完善模型;能够提升应用能力,增强创新意识。
特级教师张思明提出 “我们通过数学建模的教与学要为学生创设一个学数学、用数学的环境,为学生提供自主学习、自主探索、自主提出问题、 自主解决问题的机会。 近年来,数学建模应用题的数量和分值在高考中逐步增
数学建模案例MATLAB实用程序百例
MATLAB实用程序百例
实例1:三角函数曲线(1) function shili01 h0=figure('toolbar','none',...
'position',[198 56 350 300],... 'name','实例01'); h1=axes('parent',h0,...
'visible','off'); x=-pi:0.05:pi; y=sin(x); plot(x,y);
xlabel('自变量X'); ylabel('函数值Y'); title('SIN( )函数曲线'); grid on
实例2:三角函数曲线(2) function shili02 h0=figure('toolbar','none',...
'position',[200 150 450 350],... 'name','实例02'); x=-pi:0.05:pi; y=sin(x)+cos(x);
plot(x,y,'-*r','linewidth',1); grid on
xlabel('自变量X'); ylabel('函数值Y'); title('三角函数');
file:///E|/Document/发展篇/M&M/竞赛篇/
数学建模多元统计分析
实验报告
一、实验名称
多元统计分析作业题。
二、实验目的
(一)了解并掌握主成分分析与因子分析的基本原理和简单解法。
(二)学会使用matlab编写程序进行因子分析,求得特征值、特征向量、载荷矩阵等值。 (三)学会使用排序、元胞数组、图像表示最后的结果,使结果更加直观。
三、实验内容与要求
四、实验原理与步骤
(一)第一题:
1、实验原理: 因子分析简介:
(1) 1.1 基本因子分析模型
设p维总体x=(x1,x2,....,xp)'的均值为u=(u1,u2,....,u3)',因子分析的一般模型为 x1=u1+a11f1+a12f2+........+a1mfm+ε1 x2=u2+a21f1+a22f2+........+a2mfm+ε2 .........
xp=up+ap1f1+fp2f2+..........+apmfm+εp
其中,f1,f2,.....,fm为m个公共因子;εi是变量xi(i=1,2,.....,p)所独有的特殊因子,他们都是不可观测的隐变量。称aij(i=1,2,.....,p;j=1,2,.....,m)为变量xi的公共因子fi上的载荷,它反映了公共因子对