高中数学必修二立体几何知识点总结

“高中数学必修二立体几何知识点总结”相关的资料有哪些?“高中数学必修二立体几何知识点总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学必修二立体几何知识点总结”相关范文大全或资料大全,欢迎大家分享。

高中数学立体几何知识点总结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

立体几何

空间几何体的三视图和直观图

1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下

2 画三视图的原则: 长对正、高平齐、宽相等

3直观图:斜二测画法(角度等于45度或者135度)

4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x轴的线长度不变;(3).画法要写好。

空间几何体的表面积与体积

(一 )空间几何体的表面积:1棱柱、棱锥的表面积: 各个面面积之和

2 圆柱的表面积 S 2 rl 2 r3 圆锥的表面积:S2 rl r2

222S rl r Rl R4 圆台的表面积 5 球的表面积S 4 R

6扇形的面积公式S扇形n R21 lr(其中l表示弧长,r表示半径) 3602

注:圆锥的侧面展开图的弧长等于地面圆的周长

(二)空间几何体的体积

1柱体的体积 V S底 h 2锥体的体积 V 1S底 h 3

13台体的体积

V S上 3

平面的基本性质 43 S下) h 4球体的体积V R 3

公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面

高中数学必修2立体几何知识点

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

3

高中数学 必修2知识点

第一章 空间几何体

1.1柱、锥、台、球的结构特征(略)

棱柱:

棱锥:

棱台:

圆柱:

圆锥:

圆台:

球:

1.2空间几何体的三视图和直观图

1 三视图:

正视图:从前往后 侧视图:从左往右 俯视图:从上往下

2 画三视图的原则: 长对齐、高对齐、宽相等

3直观图:斜二测画法

4斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;

(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;

(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

1.3 空间几何体的表面积与体积

(一 )空间几何体的表面积

1棱柱、棱锥的表面积: 各个面面积之和

2 圆柱的表面积

3 圆锥的表面积2S

rl r ππ=+ 4 圆台的表面积22S rl r Rl R ππππ=+++ 5 球的表面积24S R π=

6扇形的面积公式213602n R S lr π==扇形

(其中l 表示弧长,r 表示半径) (二)空间几何体的体积

1柱体的体积 V S h =?底 2锥体的体积 13

V S h =?底 3台体的体积

1)3V S S

高中数学《必修2》立体几何知识点及解题思路

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

具体解析必修二

第一章 空间几何体

一、常见几何体的定义

能说出棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的定义和性质。

二、常见几何体的面积、体积公式

1.圆柱:侧面积S侧 cl 2 rl (其中c是底面周长,r是底面半径,l是圆柱的母线,也是高)

表面积S表 S侧 S底 2 rl 2 r2 2 r(r l)

V柱体 sh r2h

12.圆锥:侧面积S侧 cl rl (其中c是底面周长,r是底面半径,l是圆锥的母线) 2

表面积S表 S侧 S底 rl r2 r(r l) 11 V椎体 sh r2h 33

(2 r 2 R)l3.圆台:侧面积S侧 (r R)l (其中r、R是上下底面半径,l是圆台的母线)2

表面积S表 S侧 S底 (r R)l r2 R2 (rl Rl r2 R2) 1 V台体 (S' S'S S)h (其中S'、S是上下底面面积,h是圆台的高) 3

44.球:表面积S表 4 R2,体积V球 R3 3

三、直观图:会用斜二侧画法画出平面图形的直观图。

画法步骤:①在原图中画一个直角坐标系,在新图中画一个夹角为45°的坐标系; ②与x轴平行的线段仍然与x轴平行,长度不变;

与y

高中数学知识点立体几何学习的几点建议

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

【高中数学知识点】立体几何学习的几点建议.txt两个男人追一个女人 用情浅的会先放弃。两个女人追一个男人 用情深的会先放弃。╰︶ ̄—你的话,我连标点符号都不信男女授受不亲,中国哪来13亿人口。 【高中数学知识点】立体几何学习的几点建议

一 逐渐提高逻辑论证能力

立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,

对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切

忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法( “推出法”)形式写出。 二 立足课本,夯实基础

直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。

例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂, 甚至很抽象。掌握好定理有以下三点好处:

(1) 深刻掌握定理的内容,明确定理的作用是什么,多用

高中数学立体几何详细教案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

【中学数学教案】

立体几何

教案

一,空间直线与直线的关系 a ,相交 b ,平行 c ,异面 a ,

相交直线 空间中

平行于同一条直线的两条直线平行 b, 平行公理: c, 异面直线: 1,求异面直线所成角问题 注:利用平

行公理找角,利用余弦定理计算,结果要锐角或直角

??

0?090异面直线所成角的范围

, ㈠

平移法利用平行公理把异面直线所成的角转化为相交直线所成的角 CCABDBABCD?B和C 例:正方体中,E,F分别是中点,则直线AE111111

和BF所成角的余弦值 ㈡ 补形法 补形:底面是直角三角形的直三棱柱可以补成一个长方体 ?CAB 例:在直三棱柱中,,点分别是

90DF?ABC,?BCA?11111CCABA

中点,

BC=CA=,则所成角的余弦值 CDF,B与A1111111 1303015A、

B、 C、 D、 2101510 2,求异面直线之间的距离问题 和两条异面直线垂直相交的直线叫做异面直线的公垂线, 公垂线夹在两条异面直线之间的长度叫做

高中数学:向量法解立体几何总结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

向量法解立体几何

1、直线的方向向量和平面的法向量

⑴.直线的方向向量: 若A、B是直线l上的任意两点,则AB为直线l的一个方向向量;与AB平行的任意非零向量也是直线l的方向向量.

⑵.平面的法向量: 若向量n所在直线垂直于平面?,则称这个向量垂直于平面?,记作

n??,如果n??,那么向量n叫做平面?的法向量.

⑶.平面的法向量的求法(待定系数法):

①建立适当的坐标系.

②设平面?的法向量为n?(x,y,z).

③求出平面内两个不共线向量的坐标a?(a1,a2,a3),b?(b1,b2,b3).

??n?a?0④根据法向量定义建立方程组?.

??n?b?0⑤解方程组,取其中一组解,即得平面?的法向量.

2、用向量方法判定空间中的平行关系

⑴线线平行。设直线l1,l2的方向向量分别是a、b,则要证明l1∥l2,只需证明a∥b,即

a?kb(k?R).

⑵线面平行。设直线l的方向向量是a,平面?的法向量是u,则要证明l∥?,只需证明

a?u,即a?u?0.

⑶面面平行。若平面?的法向量为u,平面?的法向量为v,要证?∥?,只需证u∥v,即证u??v.

3、用向量方法判定空间的垂直关系

⑴线线垂直。设直线l1,l2的方向向量分别是a、b,则要

覃巨石:高中数学必修二立体几何精讲精练

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修二立体几何精讲精练

第一部 精讲题

第一节 简单几何体

A 组

1.下列命题中,不正确的是______.

①棱长都相等的长方体是正方体

②有两个相邻侧面为矩形的棱柱为直棱柱

③有两个侧面与底面垂直的棱柱为直棱柱

④底面为平行四边形的四棱柱叫平行六面体

解析:由平行六面体、正方体的定义知①④正确;对于②,相邻两侧面垂直于底面,则侧棱垂直于底面,所以该棱柱为直棱柱,因而②正确;对于③,若两侧面平行且垂直于底面,则不一定是直棱柱.答案:③

2.(2009年高考全国卷Ⅱ改编)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图的平面图形,则标“△”的面的方位是________.

解析:将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,

将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.答案:北

3.(2009年高考安徽卷)对于四面体ABCD ,下列命题正确的是________.(写出所有正确命题的编号).

①相对棱AB 与CD 所在的直线是异面直线;

②由顶点A 作四面体的高,其垂足是△BCD 三条高线的交点;

③若分别作△ABC 和△ABD 的边AB 上的高,

高中数学必修4知识点总结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修4知识点总结

第一章 三角函数

1正角、负角、零角、象限角的概念. 2、 与角?终边相同的角的集合:

??????2k?,k?Z?.

2、角?的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称?为第几象限角.

?k?360???k?360?90,k????第一象限角的集合为

??k?360?90?k?360?180,k???

第二象限角的集合为

??k?360?180???k?360?270,k???

第三象限角的集合为

?k?360?270???k?360?360,k????第四象限角的集合为

????k?180,k???

终边在x轴上的角的集合为

????k?180?90,k??? y终边在轴上的角的集合为

???k?90,k????终边在坐标轴上的角的集合为

???k?360??,k?????3、与角终边相同的角的集合为

????????????????????4、长度等于半径长的弧所对的圆心角叫做1弧度.

5、半径为r的圆的圆心角?所对弧的长为l,则角?的弧度数的绝对值是

??lr.

?180???1??57.31????180,???6、弧度制与角度制的换算公式:2??360,.

??7、若扇形的圆心角为

高中数学必修五知识点总结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修五知识点总结

解直角三角形...............2

数列.......................5

不等式.....................11

1

解三角形复习知识点

一、知识点总结

【正弦定理】

1.正弦定理:

abc???2R (R为三角形外接圆的半径). sinAsinBsinC2.正弦定理的一些变式:

abc; ,sinB?,sinC?2R2R2Ra?b?c?2R ;(4)iiia?2RsinA,b?2RsinB,b?2RsinC??sinA?sinB?sinC?i?a?b?c?sinA?sinB?sinC;?ii?sinA?3.两类正弦定理解三角形的问题:

(1)已知两角和任意一边,求其他的两边及一角.

(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解)

【余弦定理】

?a2?b2?c2?2bccosA?2221.余弦定理: ?b?a?c?2accosB

?c2?b2?a2?2bacosC?2.推论:

?b2?c2?a2?cosA?2bc?

a2?c2?b2?

. ?cosB?

2ac?

?b2?a2?c2?cosC?

2ab?

设a、b、c是???C的角?、?、C的对边,则: ①若a?b

高中数学必修4知识点总结

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

高中数学必修4知识点总结

第一章 三角函数

?正角:按逆时针方向旋转形成的角?1、任意角?负角:按顺时针方向旋转形成的角

?零角:不作任何旋转形成的角?2、角?的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称?为第几象限角.

??第二象限角的集合为??k?360?90?k?360?180,k???

第三象限角的集合为??k?360?180???k?360?270,k??? 第四象限角的集合为??k?360?270???k?360?360,k??? 终边在x轴上的角的集合为????k?180,k???

终边在y轴上的角的集合为????k?180?90,k??? 终边在坐标轴上的角的集合为????k?90,k???

3、与角?终边相同的角的集合为????k?360??,k???

第一象限角的集合为?k?360???k?360?90,k??

????????????????????4、长度等于半径长的弧所对的圆心角叫做1弧度.

5、半径为r的圆的圆心角?所对弧的长为l,则角?的弧度数的绝对值是??l. r?180???6、弧度制与角度制的换算公式:2??360,1?,1???57.3?. ?180???7、若扇形的圆心角为??