三角函数模型的简单应用教案

“三角函数模型的简单应用教案”相关的资料有哪些?“三角函数模型的简单应用教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角函数模型的简单应用教案”相关范文大全或资料大全,欢迎大家分享。

1.6三角函数模型的简单应用教案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

1.6三角函数模型的简单应用教案

教学目的

【知识与技能】

1.掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数相关的简单函数模型.

2.利用收集到的数据作出散点图,并根据散点图实行函数拟合,从而得到函数模型.

【过程与方法】

一、练习讲解:《习案》作业十三的第3、4题

离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是),0[,6sin 3+∞∈???

? ??+=t t l g s π,(1)求小球摆动的周期和频率;(2)已知g=980cm/s 2,要使小球摆动的周期恰好是1秒,线的长度l 理应是多少?

解:(1)l g f g l T l g ππωπω21,22===∴=

;(2)cm g l T 8.24412≈==π,即若. 4、略(学生看书)

二、应用举例:

例1如图,某地一天从6~14时的温度变化曲线近似满足函数y =Asin(ωx +?)+b

(1) 求这个天6~14时的最大温差;

(2) 写出这段曲线的函数解析式.

本题是研究温度随时间呈周期性变化的问题.问题给出了某个时间段的温度变化曲线,要求这个天的最大温差,并写出曲线的函数解析式.也就是利用函数模型来解决问题.

1.6三角函数模型的简单应用教案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

1.6三角函数模型的简单应用教案

教学目的

【知识与技能】

1.掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数相关的简单函数模型.

2.利用收集到的数据作出散点图,并根据散点图实行函数拟合,从而得到函数模型.

【过程与方法】

一、练习讲解:《习案》作业十三的第3、4题

离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是),0[,6sin 3+∞∈???

? ??+=t t l g s π,(1)求小球摆动的周期和频率;(2)已知g=980cm/s 2,要使小球摆动的周期恰好是1秒,线的长度l 理应是多少?

解:(1)l g f g l T l g ππωπω21,22===∴=

;(2)cm g l T 8.24412≈==π,即若. 4、略(学生看书)

二、应用举例:

例1如图,某地一天从6~14时的温度变化曲线近似满足函数y =Asin(ωx +?)+b

(1) 求这个天6~14时的最大温差;

(2) 写出这段曲线的函数解析式.

本题是研究温度随时间呈周期性变化的问题.问题给出了某个时间段的温度变化曲线,要求这个天的最大温差,并写出曲线的函数解析式.也就是利用函数模型来解决问题.

三角函数模型的简单应用(1)

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

1.6三角函数模型的简单应用

教学目的

【知识与技能】

1.掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型.

2.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.【过程与方法】

一、练习讲解:《习案》作业十三的第3、4题

3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平g??衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是s?3sin?(1)求小球?t??,t?[0,??),

?l?6??摆动的周期和频率;(2)已知g=980cm/s,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?

2

解:(1)???4、略(学生看书)二、应用举例:

g2??T??2?l?l1,f?g2?gg;(2)若T?1,即l??24.8cm.24?l例1如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(?x+?)+b(1) 求这一天6~14时的最大温差;(2) 写出这段曲线的函数解析式.

T /oC302010O68101214t /h本题是研究温度随时间呈周期性变化的问题.问题给出了某个时间段的温

《三角函数模型的简单应用》教学设计交流

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

苏教版 (必修4)

1.3.2 三角函数的应用(第一课时)

白塔高级中学 马彦红

教材分析

本节选择了2个例题和2 个探究案例,循序渐进地从四个层次来介绍三角函数模型的应用,素材的选择上注意了广泛性,新颖性,同时又关注到三角函数的性质的应用。 教学目标

1、体验实际问题抽象为三角函数模型问题的过程;体会三角函数是描述周期变化现象的重要函数模型.

2、让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力.

3、通过切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,从而激发学生的学习兴趣;培养学生勇于探索、勤于思考的精神。 教学重难点

教学重点:用三角函数模型解决一些具有周期变化规律的实际问题。

教学难点:分析、整理、利用信息,从实际问题中抽取基本的三角函数关系来建立数学模型,并运用相关学科的知识来解决问题.

教法分析

1、数学是一门培养人的思维、发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,所以要充分呈现获取知识和方法的思维过程。本节课的特点是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后老师启发、总结、提炼

《三角函数模型的简单应用》的教学设计模板

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

1.6 三角函数模型的简单应用教学设计

一、教学分析

三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.

三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节教材通过4个例题,循序渐进地从四个层次来介绍三角函数模型的应用,在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.

通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等. 二、教学目标

1、知识与技能:

掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型.

2、过程与方法:

选择合理三角函数模型解决实际问题,注意在复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题。切身感受数学建模的全过程,体验数学在

最新数学人教A版必修4 1.6 三角函数模型的简单应用 作业 含解析

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

最新人教版数学精品教学资料

[A.基础达标]

1.如图所示的是一质点做简谐运动的图象,则下列结论正确的是( )

A.该质点的运动周期为0.7 s B.该质点的振幅为5 cm

C.该质点在0.1 s和0.5 s时运动速度最大 D.该质点在0.3 s和0.7 s时运动速度为零

解析:选B.由题图可知,该质点的振幅为5 cm. 2.与图中曲线对应的函数解析式是( )

A.y=|sin x| B.y=sin |x| C.y=-sin |x| D.y=-|sin x|

解析:选C.注意题图所对的函数值正负,因此可排除选项A,D.当x∈(0,π)时,sin |x|>0,而图中显然是小于零,因此排除选项B,故选C.

π

3.一种波的波形为函数y=-sin x的图象,若其在区间[0,t]上至少有2个波峰(图象

2

的最高点),则正整数t的最小值是( )

A.5 B.6 C.7 D.8

π

解析:选C.函数y=-sin x的周期T=4且x=3时y=1取得最大值,因此t≥7.故选

2

C.

4.车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十

t

字路口的车流量由函数F(t)=50+4sin (其中0≤t≤20)给出,F(t

高中数学 1.6《三角函数模型的简单应用》教学设计 新人教A版必修

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

1.6《三角函数模型的简单应用》教学设计

【教学目标】

1.通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法;

2.体验实际问题抽象为三角函数模型问题的过程;

3.体会三角函数是描述周期变化现象的重要函数模型.

【导入新课】

复习引入:

简单介绍大家熟悉的“物理中单摆对平衡位置的位移与时间的关系”、“交流电的电流与时间的关系”、“声音的传播”等等,说明这些现象都蕴含着三角函数知识.

新授课阶段

例1 如图,某地一天从6~14时的温度变化曲线近似满足函数

b x A y ++=)sin(?ω.

(1)求这一天6~14时的最大温差;

(2)写出这段曲线的函数解析式.

解:(1)由图可知:这段时间的最大温差是20C ;

(2)从图可以看出:从6~14是b x A y ++=)sin(?ω的半个周期的图象, ∴1468.2T =-=∴16.T =

∵ωπ

2=T ,∴.8π

ω= 又∵301010,2301020.2

A b -?==???+?==?? ∴10,20.A b =??=? ∴10sin()20.8

y x πφ=++ 将点)10,6(代入得:1)43sin(

-=+?π, ∴Z k k ∈+=+,2

3243ππ?π, ∴Z k k ∈+=,432

黑龙江省大庆市喇中材料 - 三角函数模型的简单应用练习

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数模型的简单应用练习

1、现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD = AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,

(1)求区域Ⅱ的总面积;

(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元. 试问当为多少时,年总收入最大?

2、如图,在直角三角形线段

上。

,求在线段

的长; 上,且

的长。

,求

的面积最小值,

中,

,点

(1)若(2)若点并求

的面积最小时

3、如图,某大风车的半径为2 m.风车圆周上一点则函数

从最低点

,每6 s旋转一周,它的最低点离地面

开始,运动(s)后与地面的距离为(m),

的关系式( )

A. B.

C.

D.

4、如图,我市有一个健身公园,由一个直径为2km的半圆和一个以PQ为斜边的等腰直角三角形△PRQ构成,其中O为PQ的中点.现准备在公园里建设一条四边形健康跑道ABCD,按实际需要,四边形ABCD的两个顶点C、D分别在线段QR、PR上,另外两个顶点A、B在半圆

三角函数三角函数的诱导公式

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数的诱导公式(第一课时)

(一)复习提问,引入新课 思考 如何求 cos150 ?150 y

30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.

O

(二)新课讲授由三角函数的定义我们可以知道:

终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)

(公式一)

我们来研究角 与 的三角函数值之间的关系 y

因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos

M

O

P' (x, y)

sin( ) sin cos( ) cos tan( ) tan

(公式二)

思考 P '

7.6锐角三角函数的简单应用(2)(058)

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

响水县双语学校九(8)班数学导学案(058)

仰角、俯角有关的实际问题,培养学生把实际问题转化为数学

问题的能力。 课题:7.6锐角三角函数的简单应用第2课 学生姓名 教学目标:进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与教学过程:

一、自主探究

1.给出仰角、俯角的定义

如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与

水平线的夹角叫做俯角。右图中的∠1就是仰角, ∠2就是俯角。

二、自主合作

1.为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为27°,然后他向气球方向前进了50m,此时观测气球,测得仰角为40°。若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?

三、自主展示

3.大海中某小岛的周围10km范围内有暗礁。一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。如果该海轮继续向东行驶,会有触礁的危险吗?

四、自主拓展

1. 如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处