导数含参数的题型
“导数含参数的题型”相关的资料有哪些?“导数含参数的题型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“导数含参数的题型”相关范文大全或资料大全,欢迎大家分享。
含参数的导数问题
应用导数的概念及几何意义解题仍将是高考出题的基本出发点;利用导数研究函数的单调性、极值、最值、图象仍将是高考的主题;利用导数解决生活中的优化问题将仍旧是高考的热点;将导数与函数、解析几何、不等式、数列等知识结合在一起的综合应用,仍将是高考压轴题.
一.含参数函数求单调性(求可导函数单调区间的一般步骤和方法:(1)确定函数定义域;(2)求导数;(3)令导数大于0,解得增区间, 令导数小于0,解得减区间.)
2ax a2 1
例1(2012西2)已知函数f(x) ,其中a R. 2
x 1
(Ⅰ)当a 1时,求曲线y (Ⅱ)求
f(x)在原点处的切线方程;
f(x)的单调区间.
f(x)
(Ⅰ)解:当a 1时,
(x 1)(x 1)2x
f(x) 2,. ………………2分 222
x 1(x 1)
由
f (0) 2, 得曲线y f(x)在原点处的切线方程是2x y 0.…………3分
f (x) 2
(x a)(ax 1)
. ………………4
x2 12x
.所以f(x)在(0, )单调递增,在( ,0)单调递2
x 1
(Ⅱ)解:分
① 当a 0时,f (x)
减. ………………5分
1
(x a)(
含参数导数常见的讨论
含参数导数问题的三个基本讨论点
导数是研究函数图像和性质的重要工具,自从导数进入高中数学教材以来,有关导数问题是每年高考的必考试题之一。随着高考对导数考查的不断深入,含参数的导数问题又是历年高考命题的热点。由于含参数的导数问题在解答时往往需要对参数进行讨论,因而它也是绝大多数考生答题的难点,具体表现在:他们不知何时开始讨论、怎样去讨论。对这一问题不仅高中数学教材没有介绍过,而且在众多的教辅资料中也难得一见,本文就来讨论这一问题,供大家参考。
一、
求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。
?1,x?1?例1(2008年高考广东卷(理科) 设k?R,函数f(x)??1?x,F(x)?f(x)?kx,x?R,
??x?1,x?1?试讨论函数F(x)的单调性。
?1?k?1?x?2,x?1??12?kx,x?1,???1?x?,F'(x)??解:F(x)?f(x)?kx??1?x。
??x?1?kx,x?1?1?2kx?1?,x?1??2x?1?考虑导函数F'(x)?0是否有实根,从而需要对参数k的取值进行讨论。
1?k?1?x?2(一)若x?1,则F'(x)??1?x?2。由于当k?0时,F'(x)?0无实根
导数含参数问题讲义
导数含参数问题
类型一:没有其他未知字母情况下,求单调性,极值,最值 例1:设函数f(x)?x3?ax2?9x?1(a?0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:(Ⅰ)a的值;(Ⅱ)函数f(x)的单调区间. 解:(Ⅰ) a??3,由题设a?0,所以a??3.
(Ⅱ)由(Ⅰ)知a??3,因此f(x)?x3?3x2?9x?1, f?(x)?3x2?6x?9?3(x?3(x?1) 令f?(x)?0,解得:x1??1,x2?3.
当x?(??,?1)时,f?(x)?0,故f(x)在(??,?1)上为增函数; 当x?(?1,3)时,f?(x)?0,故f(x)在(?1, 3)上为减函数; 当x?(3,+?)时,f?(x)?0,故f(x)在(3,??)上为增函数. 由此可见,函数f(x)的单调递增区间为(??,?1)和(3,??); 单调递减区间为(?1,3).
变式训练1:设函数f(x)?x4?ax3?2x2?b(x?R),其中a,b?R. 10(Ⅰ)当a??时,讨论函数f(x)的单调性; 3
(Ⅱ)若函数f(x)仅在x?0处有极值,求a的取值范围;
(Ⅰ)解:f?(x)?4x3?3ax2?4x?x(4x2?3ax?4).
导数含参数取值范围分类讨论题型总结与方法归纳
导数习题题型十七:含参数导数问题的分类讨论问题
含参数导数问题的分类讨论问题
1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数f(x)?x3?(a?2)x2?2ax(a>0),求函数的单调区间
f?(x)?x?(a?2)x?2a?(x?a)(x?2) ★★例1 已知函数f(x)?x?2a?(a?2)lnx(a>0)求函数的单调区间 x1312x2?(a?2)x?2a(x?2)(x?a)? f?(x)? 2xx22ax?a2?1★★★例3已知函数f?x???x?R?,其中a?R。 2x?1(Ⅰ)当a?1时,求曲线y?f?x?在点2,f?2?处的切线方程; (Ⅱ)当a?0时,求函数f?x?的单调区间与极值。
??解:(Ⅰ)当a?1时,曲线y?f?x?在点2,f?2?处的切线方程为6x?25y?32?0。
2a(x2?1)?2(Ⅱ)由于a?0,所以f??x?? ,由
x2?1????1f'?x??0,得x1??,x2?a。这两个实根都在定
a1???2ax?ax?????2a?x?1??2x?2a
高考导数常见题型汇总
1已知函数f(x) ax3 bx2 (c 3a 2b)x d的图象如图所示.
(I)求c,d的值;
(II)若函数f(x)在x 2处的切线方程为3x y 11 0,求函数f(x)的解析式;
(III)在(II)的条件下,函数y
f(x)与y
1
f (x) 5x m3
的图象有三个不同的交点,求m的取值范围.
2.已知函数f(x) alnx ax 3(a R).
(I)求函数f(x)的单调区间;
(II)函数f(x)的图象的在x 4处切线的斜率为
g(x)
13m
x x2[f'(x) ]在区间(1,3)上不是单调函数,求32
3
,若函数2
m的取值范围.
3.已知函数f(x) x3 ax2 bx c的图象经过坐标原点,且在x 1处取得极大值.
(I)求实数a的取值范围;
(2a 3)2
(II)若方程f(x) 恰好有两个不同的根,求f(x)的解析式;
9
(III)对于(II)中的函数f(x),对任意 、 R,求证: |f(2sin ) f(2sin )| 81.
4.已知常数a 0,e为自然对数的底数,函数f(x) ex x,g(x) x2 alnx.
(I)写出f(x)的单调递增区间,并证明ea a; (II)讨论函数y g(x)在区间(1,ea)上零点的个数.
5.已知函
极坐标与参数方程经典题型(附含详细解答)
专题:极坐标与参数方程
1、已知在直角坐标系xOy中,曲线C的参数方程为?过定点P(3,5),倾斜角为
?x?1?4cos?(θ为参数),直线l经
?y?2?4sin??. 3(1)写出直线l的参数方程和曲线C的标准方程;
(2)设直线l与曲线C相交于A,B两点,求|PA|?|PB|的值.
2、在直角坐标系中,以坐标原点为极点,
2轴的正半轴为极轴建立极坐标系,已知曲线
???x?2?tcos45(t为参数)与曲线C交C:?sin??2cos?,过点P(2,?1)的直线l:????y??1?tsin45于M,N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)求|PM|?|PN|的值.
22
1 / 17
??x?2?3cos?3、在平面直角坐标系xOy中,已知曲线:?(?为参数),以平面直
??y?3sin?角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:?(cos??sin?)?6.
(1)求曲线C上点P到直线l距离的最大值;
(2)与直线l平行的直线l1交C于A,B两点,若|AB|?2,求l1的方程.
4、在平面直角坐标系xOy中,以原点曲线C1的参数方程为?为极点,轴的正半轴为
导数综合练习二利用导数求参数范围
导数综合练习二利用导数求参数范围(7.7)
1、已知函数f x xlnx.
(1)求函数f x 的极值点;
(2)若直线l过点(0,—1),并且与曲线y f x 相切,求直线l的方程;
(3)设函数g x f x a x 1 ,其中a R,求函数g x 在 1,e 上的最小值.
(其中e为自然对数的底数)
2.已知{ EMBED Equation.3 |a为常数,,函数,.(其中是自然对数的底数)
(Ⅰ)过坐标原点作曲线的切线,设切点为,求证:;
(Ⅱ)令,若函数在区间上是单调函数,求的取值范围.
3. 已知函数在处的切线斜率为零.
(Ⅰ)求和的值;
(Ⅱ)求证:在定义域内恒成立;
(Ⅲ) 若函数有最小值,且,求实数的取值范围.
4..设函数.
(Ⅰ)当时,判断函数的零点的个数,并且说明理由;
(Ⅱ)若对所有,都有,求正数的取值范围.
导数综合练习二利用导数求参数范围
1. 解:(1)f x lnx 1,x>0.………………………………………………………1分 而f x >0 lnx+1>0 x>,f x <0 lnx 1<0 0<x<,
所以f x 在 0, 上单调递减,在 , 上单调递增.………………3分 1e1e 1
e 1 e
所以x
2-6隐函数的导数、参数方程函数的导数、相关变化率
中南大学,高等数学,微积分,课件
中南大学,高等数学,微积分,课件
一、隐函数的导数定义:由方程所确定的函数 y y( x )称为隐函数 .y f ( x ) 形式称为显函数F ( x, y) 0 y f (x)
.
隐函数的显化
问题:隐函数不易显化或不能显化如何求导?
隐函数求导法则:用复合函数求导法则直接对方程两边求导.
中南大学,高等数学,微积分,课件
例1 求由方程y 的导数
xy e ex
y
0 所确定的隐函数
dy dx
,
dy dxx 0
.
解
方程两边对
x 求导 ,x
y x
dy dx
ee
e yy
y
dy dx
0
解得 dy dx
dy dx
x
x eex
,
由原方程知
x 0, y 0,
x 0
yy x 0 y 0
x e
1.
中南大学,高等数学,微积分,课件
例2 设曲线 C 的方程为 x 3 y 3 3 xy , 求过 C 上3 3 点 ( , )的切线方程 2 2 线通过原点 .x 求导 ,3 x 3 y y 3 y 3 xy 2 2
, 并证明曲线
C 在该点的法
解
方程两边对
y
3 3 ( , ) 2 2
y x2
2
y x
(
3 3 , ) 2 2
1.
所求切线方程为 y 法线
高三导数压轴题题型归纳()
导数压轴题题型
1. 高考命题回顾
x
例1已知函数f(x)=e-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
11xx0
(1)解 f(x)=e-ln(x+m)?f′(x)=e-?f′(0)=e-=0?m=1,
x+m0+mx1ex+-1
定义域为{x|x>-1},f′(x)=ex-=,
x+mx+1
显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.
1xx(2)证明 g(x)=e-ln(x+2),则g′(x)=e-(x>-2).
x+2
11xxh(x)=g′(x)=e-(x>-2)?h′(x)=e+>0,
x+2x+2
所以h(x)是增函数,h(x)=0至多只有一个实数根,
1111
又g′(-)=-<0,g′(0)=1->0,
22e3
2
?1?
所以h(x)=g′(x)=0的唯一实根在区间?-,0?内,
?2?
?1?1t设g′(x)=0的根为t,则有g′(t)=e-=0?- t+2?2? 1 所以,et=?t+2=e-t, t+2 当x∈(-2,t)时,g′(x) 1+t2t所以g(x)min=g(t)=e-ln(t+2)=+t=>
高三导数压轴题题型归纳
导数压轴题题型
1. 高考命题回顾
例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
11
(1)解 f(x)=ex-ln(x+m)?f′(x)=ex-?f′(0)=e0-=0?m=1,
x+m0+m
ex?x+1?-11x
定义域为{x|x>-1},f′(x)=e-=,
x+mx+1
显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.
1
(2)证明 g(x)=ex-ln(x+2),则g′(x)=ex-(x>-2).
x+2
11
h(x)=g′(x)=ex-(x>-2)?h′(x)=ex+>0,
x+2?x+2?2所以h(x)是增函数,h(x)=0至多只有一个实数根,
1111
又g′(-)=-<0,g′(0)=1->0,
22e3
2
1
-,0?内, 所以h(x)=g′(x)=0的唯一实根在区间??2?
11
- 1- 所以,et=?t+2=et, t+2 当x∈(-2,t)时,g′(x) ?1+t?21t 所以g(x)min=g(t)=e-ln(t+2)=+t=>0, t+2t+2 当m≤2时,有ln(x+m)≤ln(x