小学六年级数学奥数视频
“小学六年级数学奥数视频”相关的资料有哪些?“小学六年级数学奥数视频”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学六年级数学奥数视频”相关范文大全或资料大全,欢迎大家分享。
小学数学奥数题六年级
一.工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽
六年级数学奥数100题
练习二 姓名
31. 一个种植专业户,种苹果树1250平方米,桃树比苹果树多,种桃树多少平方米?
5
12. 光明玻璃厂十月份生产玻璃2000箱,比九月份多生产了。九月份生产玻璃多少箱?
3
3. 一桶油,第一次取出
2,第二次取20千克,这时捅里还剩28千克,这捅油共有多少千克? 5
4. 育英小学六月份开支69元,比五月份节约了15元,六月份节约了百分之几?
5. 四年级有学生40人,其中女生占全班人数的
少人?
16. 加工一批零件,第一天完成260个,第二天完成总数的20% 两天正好完成总数的,这批零件有多
322,四年级女生占全枚学生总数的。全枚共有学生多
215少个?第二天完成多少个?
7. 一辆轿车和一辆卡车同时从甲地开往乙地,当轿车行到全程的
速度继续行驶,当骄事到达乙地时,卡车行完了全程的
8. 甲、乙两人同时从东镇到西镇,当甲走完全程的
镇还有全程的
1时,卡车离乙地54千米,照这样的24,甲乙两地相距多少千米? 51时,乙只走了4.8千米。当甲到达西镇时,乙距西23。求两镇相距多少千米? 111
9. 果园种桃树800棵,比梨树多
12,种苹果树比梨树
小学六年级奥数题
小学六年级奥数题
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解:
1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可
知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数
最新六年级数学奥数培训课程资料
第1讲 定义新运算
一、知识要点
定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练
【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。这里的“*”就代表一种新运算。在定义新运算中同样规定了要先算小括号里的。因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:
1.将新运算“*”定义为:a*b=(a+b)×(a-b).。求27*9。 2.设a*b=a2+2b,那么求10*6和5*(2*8)。 3.设a*b=3a-b×1/2,求(25*12)*(10*5)。 【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。求3△(4△6)
最新六年级数学奥数培训课程资料
第1讲 定义新运算
一、知识要点
定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练
【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。这里的“*”就代表一种新运算。在定义新运算中同样规定了要先算小括号里的。因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:
1.将新运算“*”定义为:a*b=(a+b)×(a-b).。求27*9。 2.设a*b=a2+2b,那么求10*6和5*(2*8)。 3.设a*b=3a-b×1/2,求(25*12)*(10*5)。 【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。求3△(4△6)
小学六年级奥数教程题目
奥数教程(六年级)
第一讲 分数的计算
例1 计算:
2009?(3.4?69?3.5) (提示:转化成分母相同)
3.5?69?3.4例2 计算:
1.2?3.6?10.8?2?6 ?18?139??131313(提示:找分子分母共同点,1241.2?2.4?4.8?2?4?8???131313变形)
例3 计算:
(提示:先合并再相加)
11111111111?3?5?7?9?11?13?15?17?192481632641282565121024例4 计算:
123456789(1?)?(2?)?(3?)?(4?)?(5?)?(6?)?(7?)?(8?)?(9?)2345678910(提示:先求差)
例5 计算:
约分)
455132622231311???(分子分解质因数,
7?11?1311?13?1713?17?1917?19?23例6 计算:
(22?42?62?...?1002)?12?32?52?...?9921?2?3?...?8?9?10?9?8?...?3?2?1??
第二讲 分数的大小比较
例1 分数5、15、4、40、103中,哪一个最大?(提示:化简,
7179124309统一分
小学六年级奥数浓度问题
京翰杭州校区
学 案
学员姓名:_____________ 授课教师:______高莹______ 所授科目:____数学_________ 学员年级:___六__ 上课时间:___年__月__日____时___分至____时___分共___小时 标 题 浓度问题 1、理解浓度的含义及相关的数量关系理清稀释和蒸发以及两种溶液混学习目标 合等相关浓度问题的解题思路灵活解答浓度问题。 2、在探究例题的基础上联系生活实际掌握浓度问题的特点及解题规律 学习重点 学习难点 上次作业检查 抓住不变量及用方程解决浓度问题。 理解浓度的含义及数量关系,灵活解决浓度问题 一、知识回顾 日常生活中,我们将一定量的水放入玻璃杯中,并放入一定量的盐,经搅拌后形成均匀的混合物,成为盐水溶液,被溶解的盐称为溶质,溶解盐的水称为溶剂。 1、溶液(盐水)质量、溶质(盐)质量和溶剂(水)质量三者之间存在怎样的关系? 2、当盐水过“咸”时,可向玻璃杯中加水,即增加了溶剂,因而溶液重量增加,但溶质(盐)没
小学六年级奥数浓度问题
京翰杭州校区
学 案
学员姓名:_____________ 授课教师:______高莹______ 所授科目:____数学_________ 学员年级:___六__ 上课时间:___年__月__日____时___分至____时___分共___小时 标 题 浓度问题 1、理解浓度的含义及相关的数量关系理清稀释和蒸发以及两种溶液混学习目标 合等相关浓度问题的解题思路灵活解答浓度问题。 2、在探究例题的基础上联系生活实际掌握浓度问题的特点及解题规律 学习重点 学习难点 上次作业检查 抓住不变量及用方程解决浓度问题。 理解浓度的含义及数量关系,灵活解决浓度问题 一、知识回顾 日常生活中,我们将一定量的水放入玻璃杯中,并放入一定量的盐,经搅拌后形成均匀的混合物,成为盐水溶液,被溶解的盐称为溶质,溶解盐的水称为溶剂。 1、溶液(盐水)质量、溶质(盐)质量和溶剂(水)质量三者之间存在怎样的关系? 2、当盐水过“咸”时,可向玻璃杯中加水,即增加了溶剂,因而溶液重量增加,但溶质(盐)没
小学六年级数学奥数所有内容
黄桥镇社区教育中心秋季班六年级数学
第一讲 解方程
第一课时
例题:
例1、180+6X=330 例 2、3.4X+1.8=8.6 例3、1.8X-X=2.4
习题:
1、0.8X-4=1.6 2、2.2X-1=10 3、3.5X+1.8X=12.72
4、6×3-1.8X=7.2 5、18.8-5X=2.4+3.2X
第二课时
例题:
例1、4X+X=3.15 例2、X+
习题:
1、5X-X=2.4 2、X+ 4、X-
- 1 -
23X=21 例3、X+2.4X=6 5523X= 3、X-0.25X=3 74135X=12.6×-2X=8 48 5、6黄桥镇社区教育中心秋季班六年级数学
第三课时
例题:
例1、5X÷2=10 例2、15X÷2=60 例3、4.5+8X=27
习题:
1、3.6X÷2=2.16 2、
4、2X+4.3×3=14
1 213X= 3、X-0.8X=10 24
小学六年级数学奥数所有内容
黄桥镇社区教育中心秋季班六年级数学
第一讲 解方程
第一课时
例题:
例1、180+6X=330 例 2、3.4X+1.8=8.6 例3、1.8X-X=2.4
习题:
1、0.8X-4=1.6 2、2.2X-1=10 3、3.5X+1.8X=12.72
4、6×3-1.8X=7.2 5、18.8-5X=2.4+3.2X
第二课时
例题:
例1、4X+X=3.15 例2、X+
习题:
1、5X-X=2.4 2、X+ 4、X-
- 1 -
23X=21 例3、X+2.4X=6 5523X= 3、X-0.25X=3 74135X=12.6×-2X=8 48 5、6黄桥镇社区教育中心秋季班六年级数学
第三课时
例题:
例1、5X÷2=10 例2、15X÷2=60 例3、4.5+8X=27
习题:
1、3.6X÷2=2.16 2、
4、2X+4.3×3=14
1 213X= 3、X-0.8X=10 24