空间直线与平面知识点总结

“空间直线与平面知识点总结”相关的资料有哪些?“空间直线与平面知识点总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“空间直线与平面知识点总结”相关范文大全或资料大全,欢迎大家分享。

空间点直线平面知识点

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

空间点、直线、平面的位置关系

(1)平面

① 平面的概念: A.描述性说明; B.平面是无限伸展的;

② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

也可以用两个相对顶点的字母来表示,如平面BC。

③ 点与平面的关系:点A在平面 内,记作A ;点A不在平面 内,记作A 点与直线的关系:点A的直线l上,记作:A∈l; 点A在直线l外,记作A l; 直线与平面的关系:直线l在平面α内,记作l α;直线l不在平面α内,记作l α。

(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线)

应用:检验桌面是否平; 判断直线是否在平面内

用符号语言表示公理1:A l,B l,A ,B l

(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一

平面。

公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据

(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:P A B

直线与方程知识点总结和练习

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

直线与方程的知识点

倾斜角与斜率

1. 当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l的倾斜角 的范围是0 . 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即k tan . 如果知道直线上两点

y y1

. 特别地是,当x1 x2,y1 y2时,直线与x轴垂直,斜率kP(x1,y1),P(x2,y2),则有斜率公式k 2

x2 x1不存在;当x1 x2,y1 y2时,直线与y轴垂直,斜率k=0.

注意:直线的倾斜角α=90°时,斜率不存在,即直线与y轴平行或者重合. 当α=90°时,斜率k=0;当0 90 时,斜率k 0,随着α的增大,斜率k也增大;当90 180 时,斜率k 0,随着α的增大,斜率k也增大. 这样,可以求解倾斜角α的范围与斜率k取值范围的一些对应问题.

两条直线平行与垂直的判定

1. 对于两条不重合的直线l1 、l2,其斜率分别为k1、k2,有:

(1)l1//l2 k1 k2;(2)l1 l2 k1 k2 1.

2. 特例:两条直线中一条斜率不存在时,另一条斜率

直线与方程知识点总结和练习

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

直线与方程的知识点

倾斜角与斜率

1. 当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l的倾斜角 的范围是0 . 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即k tan . 如果知道直线上两点

y y1

. 特别地是,当x1 x2,y1 y2时,直线与x轴垂直,斜率kP(x1,y1),P(x2,y2),则有斜率公式k 2

x2 x1不存在;当x1 x2,y1 y2时,直线与y轴垂直,斜率k=0.

注意:直线的倾斜角α=90°时,斜率不存在,即直线与y轴平行或者重合. 当α=90°时,斜率k=0;当0 90 时,斜率k 0,随着α的增大,斜率k也增大;当90 180 时,斜率k 0,随着α的增大,斜率k也增大. 这样,可以求解倾斜角α的范围与斜率k取值范围的一些对应问题.

两条直线平行与垂直的判定

1. 对于两条不重合的直线l1 、l2,其斜率分别为k1、k2,有:

(1)l1//l2 k1 k2;(2)l1 l2 k1 k2 1.

2. 特例:两条直线中一条斜率不存在时,另一条斜率

空间与图形知识点

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

初中数学空间与图形知识点总结

A、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的

空间与图形知识点

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

初中数学空间与图形知识点总结

A、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的

2.3直线与方程知识点

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

必修2第三章 直线与方程

3.1直线的倾斜角和斜率

3.1倾斜角和斜率

1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.

2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°.

3、直线的斜率:

一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα

⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;

⑵当直线l与x轴垂直时, α= 90°, k 不存在.

由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.

4、 直线的斜率公式:

给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:

斜率公式: k=y2-y1/x2-x1

3.1.2两条直线的平行与垂直

1

、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

注意: 上面的等价是在两条直线不

空间直线和平面总结 - 知识结构图+例题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

空间直线和平面

[知识串讲]

空间直线和平面: (一)知识结构

(二)平行与垂直关系的论证

1、线线、线面、面面平行关系的转化: 面面平行性质 ?//?????a,??????a?b?//b a a//b? ? b a??,b? ???? ?a//? a??,b?? A b ? a a?b?A a//?,b//? ???????公理4 (a//b,b//c a//c) 线线∥ 线面平行判定 线面平行性质 线面∥ ??//?面面平行判定1 面面平行性质 面面∥ 面面平行性质1 ?//???//????a??? ?????b?a//??a//b?//??a????? ??//? ?a//?

2. 线线、线面、面面垂直关系的转化:

??a?b?O? ?l?a,l?b?a,b???l?? ?????? a???a?? 面面⊥ 三垂线定理、逆定理 线线⊥ PA??,AO为PO在?内射影a??则a?OA?a?POa?PO?a?AOl??线面垂直判定1 线面垂直定义 线面⊥ ???面面垂直判定 面面垂直性质,推论2 ??a??? ?l?a

直线与圆知识点以及经典例题总结归纳

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

一. 知识框图:

?圆的有关性质?直线和圆的位置关系? 圆?

?圆和圆的位置关系??正多边形和圆??点和圆的位置关系(这是重点)?圆的定义??不在同一直线上的三点确定一个圆???轴对称性—垂径定理(这是重点)?? 圆的有关性质??圆心角、弧、弦、弦心距间的关系 ??圆心角定理?圆的有关性质????旋转不变性????圆周角定理(这是重点)?????圆内接四边形(这是重点)???相离???相交??切线的性质(这是重点) 直线和圆的位置关系? ??切线的判定(这是重点)?相切????弦切角(这是重点)???和圆有关的比例线段(这是重点难点)????外离?内含? 圆和圆的位置关系?相交

??内切(这是重点)?相切?????外切(这是重点)??两圆的公切线?正多边形定义???正多边形和圆?正多边形和圆????正多边形的判定及性质??正多边形的有关计算(这是重点) 正多边形和圆? ???圆周长、弧长(这是重点)???圆的有关计算?圆、扇形、弓形面积(这是重点)???圆柱、圆锥侧面展开图(这是重点)?

直线与圆的位置关系

教学目标:1. 了解直线与圆的三种位置关系,掌握运用圆心到直线的距离的数量关系或用直

线与圆的交点个数来确

空间向量知识点归纳总结(经典)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

空间向量与立体几何知识点归纳总结

一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

????运算律:⑴加法交换律:a?b?b?a

??????⑵加法结合律:(a?b)?c?a?(b?c)

????⑶数乘分配律:?(a?b)??a??b

?????????????????????????????????OB?OA?AB?a?b;BA?OA?OB?a?b;OP??a(??R)

运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共

??线向量或平行向量,a平行于b,记作

?????(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存在实数

??a//b。 ???λ,使a=λb。

(3)三点共线:A、B、C三点共线<=>AB??AC

<=>OC?xOA?yOB(其中x?y?1)

?a(4)与共线的单位向量为

aa

???x,y使

空间向量与立体几何知识点归纳总结

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

一对一授课教案

学员姓名: 年级: 所授科目:

上课时间: 年 月 日 时 分至 时 分共 小时

老师签名 教学主题 上次作业检查 本次上课表现 本次作业 空间向量与立体几何 学生签名

一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

????运算律:⑴加法交换律:a?b?b?a

??????⑵加法结合律:(a?b)?c?a?(b?c)

????⑶数乘分配律:?(a?b)??a??b

? ????????????????????????????????OB?OA?AB?a?b;BA?OA?OB?a?b;OP??a(??R)

???b,记作a//b。

运算法则:三角形法则、平行四边形法则、平行六面体法则 3