机器人动力学和运动学的关系
“机器人动力学和运动学的关系”相关的资料有哪些?“机器人动力学和运动学的关系”相关的范文有哪些?怎么写?下面是小编为您精心整理的“机器人动力学和运动学的关系”相关范文大全或资料大全,欢迎大家分享。
机器人动力学
机器人动力学研究的典型方法和应用
(燕山大学 机械工程学院)
摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。
前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。
报告正文:
(1)机器人动力学研究的方法
1)牛顿—欧拉法
应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征
机器人动力学
机器人动力学研究的典型方法和应用
(燕山大学 机械工程学院)
摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。
前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。
报告正文:
(1)机器人动力学研究的方法
1)牛顿—欧拉法
应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征
机器人动力学
机器人动力学研究的典型方法和应用
(燕山大学 机械工程学院)
摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。
前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。
报告正文:
(1)机器人动力学研究的方法
1)牛顿—欧拉法
应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征
机器人运动学
第2章 机器人位置运动学
2.1 引言
本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。
实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。
2.2 机器人机构
机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。
在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定
柔性机器人的动力学研究
柔性机器人的动力学研究
摘要:现代机械向高速、精密、轻型和低噪声等方向发展,为了提高机械产品的动态性能、工作品质,必须十分重视机构动力学的研究。特别对于高速运行的机器人,在外力与惯性力作用下,构件的弹性变形不可忽略,它不仅影响了机构的轨迹精度和定位精度,破坏系统运行的稳定性和可靠性,同时降低了工作效率和整机的使用寿命。对有害动态响应的消减是机械动力学研究的重要问题。本文以柔性机器人为例,阐述了柔性机器人动力学分析的研究现状及其发展趋势,对Lagrange法,有限元法、 变Newton-Euler方法、Kane方法等方法进行了详细阐述和比较为柔性机器人的控制和优化设计提供科学基础。 关键字:柔性机器人 动力学 Lagrange 变Newton-Eule方法 Kane方法 有限元法
Dynamics of Flexible Manipulators
Name: Liu Fuxiu Student ID: 1211303007
(Mechanical Engineering of Guangxi University, Mechanical Design and Theory 12 research)
Abstract: The modern m
机器人逆运动学
clear; clc;
L1 = Link('d', 0, 'a', 0, 'alpha', pi/2); %Link 类函数 L2 = Link('d', 0, 'a', 0.5, 'alpha', 0,'offset',pi/2); L3 = Link('d', 0, 'a', 0, 'alpha', pi/2,'offset',pi/4); L4 = Link('d', 1, 'a', 0, 'alpha', -pi/2); L5 = Link('d', 0, 'a', 0, 'alpha', pi/2); L6 = Link('d', 1, 'a', 0, 'alpha', 0);
b=isrevolute(L1); %Link 类函数
robot=SerialLink([L1,L2,L3,L4,L5,L6]); %SerialLink类函数 robot.name='带球形腕的拟人臂'; %SerialLink属性值 robot.manuf='飘零过客'; %SerialLink属性值 robot.display(); %Link 类函数 theta=[0 0 0 0 0 0];
robot.plot(t
机器人逆运动学
clear; clc;
L1 = Link('d', 0, 'a', 0, 'alpha', pi/2); %Link 类函数 L2 = Link('d', 0, 'a', 0.5, 'alpha', 0,'offset',pi/2); L3 = Link('d', 0, 'a', 0, 'alpha', pi/2,'offset',pi/4); L4 = Link('d', 1, 'a', 0, 'alpha', -pi/2); L5 = Link('d', 0, 'a', 0, 'alpha', pi/2); L6 = Link('d', 1, 'a', 0, 'alpha', 0);
b=isrevolute(L1); %Link 类函数
robot=SerialLink([L1,L2,L3,L4,L5,L6]); %SerialLink类函数 robot.name='带球形腕的拟人臂'; %SerialLink属性值 robot.manuf='飘零过客'; %SerialLink属性值 robot.display(); %Link 类函数 theta=[0 0 0 0 0 0];
robot.plot(t
机器人 速度运动学
《机器人原理与应用》
第五章速度运动学授课教师:闻时光东北大学人工智能与机器人研究所
2011/7/4
第五章速度运动学
本章将进一步讨论运动的几何学及与时间有关的量,即讨论机器人的速度运动学问题。速度运动学问题重要是因为操作机不仅需要达到某个 (或一系列的)位置,而且常需要它按给定的速度达到这些位置。主要内容: 5.1操作机的微分移动 5.2微分转动的两个定理 5.3微分算子 5.4雅可比矩阵及其变换 5.5雅可比矩阵的力学意义
2011/7/4
第五章速度运动学
5.1操作机的微分移动所谓微分运动指的是无限小的运动,即无限小的移动和无限小的转动。它既可以用指定的当前坐标系来描述,也可以用基础坐标系来描述。对于微分移动(平动)的齐次变换矩阵T可表示为 1 0 Trans (dx, dy, dz )= 0 0 0 1 0 0 0 dx 0 dy 1 dz 0 1
式中 dx, dy, dz是微分位移矢量在基础坐标系或当前坐标系的分量。2011/7/4 3
第五章速度运动学
5.2微分转动的两个定理 若绕x轴转微小θ角表示为δ x,并考虑,sinδ x=δ x cosδ x= 1则对x,y,z多轴微分转动的齐次变换矩阵R应该有如下形式: 1 0
机器人运动学(精品教程)
第2章 机器人位置运动学
2.1 引言
本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。
实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。
2.2 机器人机构
机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。
在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定
03052007025+张鑫+爬楼机器人运动学、动力学分析及遥控装置的设
中国人民解放军炮兵学院
毕 业 设 计
军用爬楼机器人运动学分析及遥控装置的设计
姓 名: 张 鑫 学 号: 03052007025 专 业: 机械工程及其自动化 选题方向:特种作战装置设计 指导教员: 李玉亮 胡立明 教 研 室: 机械工程教研室 设计提交日期:2011.6.20 设计答辩日期:
答辩委员会主席: 评 阅 人:
2011年 月 日
摘 要
楼梯是人造环境中的最常见的障碍,也是机器人移动作战最难跨越的障碍之一。本论文主要研究爬楼机器人行走机构的结构设计。在深入分析爬楼机构及其攀爬对象的基础上,设计了相对优势较明显的轮组结构爬楼机器人。对机器人小车的运动学模型进行分析,论证。
本文介绍了具有四角行星轮驱动系统的爬楼小车,在路况良好的情况下,运动子轮平稳行驶,遇到小型障碍