对角矩阵性质n次幂
“对角矩阵性质n次幂”相关的资料有哪些?“对角矩阵性质n次幂”相关的范文有哪些?怎么写?下面是小编为您精心整理的“对角矩阵性质n次幂”相关范文大全或资料大全,欢迎大家分享。
幂零矩阵性质应用
------------幂零矩阵的性质及应用
目录
幂零矩阵的概念 幂零矩阵的性质 特殊的幂零矩阵 幂零矩阵的应用
------------幂零矩阵的性质及应用定义一
定义二
------------幂零矩阵的性质及应用
------------幂零矩阵的性质及应用
特殊的幂零矩阵 1、A为实对称矩阵且 A2 0 阵都是相似. 3、所有 n阶n-1次幂零矩阵相似(n-1为幂 零指数). ,则有 A=0.
2、所有n 阶幂零指数等于其阶数的幂零矩
------------幂零矩阵的性质及应用
利用幂零矩阵的性质来简化矩阵求逆的计算
1. 可表为幂零矩阵与单位矩阵和的矩阵的逆. 若矩阵A可表示为幂零 矩阵与单位矩阵的和,则可借用二项式展 开定理,将矩阵A的逆转 化为单位矩阵与幂零矩阵的乘幂. 2. 主对角线上元素完全相同的三角矩阵的逆. 对于主对角线元素完 全相同的三角矩阵可表示为数量矩阵和幂零矩阵的和 3. 可表示为若当矩阵的幂的和的矩阵的逆
------------幂零矩阵的性质及应用一个例子
------------幂零矩阵的性质及应用幂零矩阵其他重要的应用1、对于n维线性空间v,必存在 的一组基使得由v的幂零线性变换生成的 幂零代数N中任意元素在该基
幂零矩阵性质及应用
幂零矩阵性质及应用
数本041 严益水 学号:410401109
摘要:
幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。它具有一些很好的性质。本文从矩阵的不同角度讨论了幂零矩阵的相关性质。幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题进行思考得出了一些结论,对幂零矩阵的研究很有意义。在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。
关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识
(下面的引理和概念来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社)
(一) 一些概念
1、令A为n阶方阵,若存在正整数k,使Ak?0,A称为幂零矩阵。 2、若A为幂零矩阵,满足Ak?0的最小正整数称为A的幂零指数。
?a11?a1n??a11?an1?????3、设A??????,称A???????为A
幂零矩阵性质及应用
幂零矩阵性质及应用
数本041 严益水 学号:410401109
摘要:
幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。它具有一些很好的性质。本文从矩阵的不同角度讨论了幂零矩阵的相关性质。幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题进行思考得出了一些结论,对幂零矩阵的研究很有意义。在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。
关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识
(下面的引理和概念来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社)
(一) 一些概念
1、令A为n阶方阵,若存在正整数k,使Ak?0,A称为幂零矩阵。 2、若A为幂零矩阵,满足Ak?0的最小正整数称为A的幂零指数。
?a11?a1n??a11?an1?????3、设A??????,称A???????为A
幂等矩阵的性质及应用
JIU JIANG UNIVERSITY
毕 业 论 文 (设 计)
题 目幂等矩阵的性质及应用 英文题目Properties and Application
of Idempotent Matrix
院 系 理学院 专 业 数学与应用数学 姓 名 邱望华 年 级 A0411 指导教师 王侃民
二零零八年 五月
摘 要
幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。
[关键词] 幂等矩阵,性质,幂等性,线性组合
I
Abstract
The idempotent matrix is widely applied in mathematics as well
矩阵的对角化及其应用
学院2016届
本科毕业论文(设计)
矩阵的对角化及其应用
学生姓名: 学 号:
专 业: 数学与应用数学 指导老师: 答辩时间: 2016.5.22 装订时间: 2016.5.25
A Graduation Thesis (Project)
Submitted to School of Science, Hubei University for Nationalities
In Partial Fulfillment of the Requiring for BS Degree
In the Year of 2016
Diagonalization of the Matrix and its Applications
Student Name Student No.:
Specialty: Mathematics and Applied Mathematics Supervisor:
Date of Thesis Defense:2016.5.22 Date of Bookbinding: 201
毕业论文 幂零矩阵的性质与应用 曹彦辉
齐齐哈尔大学毕业设计(论文)
摘 要
在高等数学研究中,矩阵不仅是研究问题的一种重要工具而且在实际生活中具有广泛的应用,幂零矩阵是矩阵中满足Ak?0的一类比较特殊的矩阵,所以幂零矩阵在矩阵理论中占有非常重要的地位,同时在实际应用方面也具有特殊的意义。幂零矩阵具有很多很好的性质,本文归纳总结18条性质,共用到定理或引理14条,系统说明这些性质并给出相应的证明;如在求特殊矩阵的逆以及在若尔当标准型的计数方面等,本文深入挖掘这些性质,并且用不同的方法去分析、论证这些性质。同时本文幂零矩阵自身具有的一些特殊性质给出了论证,并举例加以说明。
本文同时探讨了2个矩阵是幂零矩阵的充分必要条件,并说明其在求矩阵的逆矩阵方面的方便化与简单化,体现了幂零矩阵的实用性以及研究的必要行;同时探讨了数域K上n阶矩阵与幂零矩阵简单的联系,比如可以利用n阶矩阵与幂零矩阵的运算解决需许多实际问题,即每一个奇异方阵均可表示成一个幂零方阵加上两个幂零方阵的乘积. 利用幂零矩阵的性质,可以把一个n阶方阵变为两个可逆矩阵与一个对角矩阵之和,进而方便研究矩阵的其他性质,并通过具体例子说明其在实际应运中的作用。
关键词:幂零矩阵;线性变换;逆矩阵;若尔当标准型;特征值
毕业论文 幂零矩阵的性质与应用 曹彦辉
齐齐哈尔大学毕业设计(论文)
摘 要
在高等数学研究中,矩阵不仅是研究问题的一种重要工具而且在实际生活中具有广泛的应用,幂零矩阵是矩阵中满足Ak?0的一类比较特殊的矩阵,所以幂零矩阵在矩阵理论中占有非常重要的地位,同时在实际应用方面也具有特殊的意义。幂零矩阵具有很多很好的性质,本文归纳总结18条性质,共用到定理或引理14条,系统说明这些性质并给出相应的证明;如在求特殊矩阵的逆以及在若尔当标准型的计数方面等,本文深入挖掘这些性质,并且用不同的方法去分析、论证这些性质。同时本文幂零矩阵自身具有的一些特殊性质给出了论证,并举例加以说明。
本文同时探讨了2个矩阵是幂零矩阵的充分必要条件,并说明其在求矩阵的逆矩阵方面的方便化与简单化,体现了幂零矩阵的实用性以及研究的必要行;同时探讨了数域K上n阶矩阵与幂零矩阵简单的联系,比如可以利用n阶矩阵与幂零矩阵的运算解决需许多实际问题,即每一个奇异方阵均可表示成一个幂零方阵加上两个幂零方阵的乘积. 利用幂零矩阵的性质,可以把一个n阶方阵变为两个可逆矩阵与一个对角矩阵之和,进而方便研究矩阵的其他性质,并通过具体例子说明其在实际应运中的作用。
关键词:幂零矩阵;线性变换;逆矩阵;若尔当标准型;特征值
发现筝形对角线性质
龙源期刊网 http://www.qikan.com.cn
发现筝形对角线性质
作者:张雅茜
来源:《初中生世界·八年级》2015年第10期
筝形,就是指两组邻边分别相等的四边形.如图,四边形ABCD就是一个筝形. 筝形的对角线也有一些特殊的性质.连接AC、BD交于点O. 猜想1:AC平分∠BAD,∠BCD. 证明:在△ABC和△ADC中, AB=AD, BC=DC, AC=AC.
∴△ABC≌△ADC.(SSS) ∴∠BAC=∠DAC,∠BCA=∠DCA. 即AC平分∠BAD、∠BCD. 猜想2:AC⊥BD.
证明:在△ABO和△ADO中, AB=AD, ∠BAC=∠DAC, AO=AO.
∴△ABO≌△ADO.(SAS) ∴∠AOB=∠AOD. ∵∠AOB+∠AOD=180°, 所以∠AOB=∠AOD=90°.
酉矩阵和正交矩阵的性质和应用
正交矩阵与酉矩阵的性质和应用
0 前 言.......................................................................................................................... 1 1 欧式空间和正交矩阵................................................................................................ 2
1.1 欧式空间.......................................................................................................... 2 1.2 正交矩阵的定义和性质.................................................................................. 2
1.2.1 正交矩阵的定义和判定....................................
概率论 5.2-5.3矩阵对角化,实对称矩阵的相似标准形分解
5.2 矩阵对角化
一、相似矩阵与相似变换的概念定义1 设A, B都是n阶矩阵, 若有可逆矩阵 P , 使 P AP B , 则称B是A的相似矩阵, 或说矩阵A与B相似.对A进 行运算 P 1 AP称为对A进行相似变换 , 可逆矩阵P 称为把A变成B的相似变换矩阵. 1
A与B相似 可逆阵P , 使得P 1 AP B
定理1 若n阶矩阵A与B相似, 则A与B的特征多项 式相同, 从而A与B的特征值亦相同.证明A与B相似 可逆阵P , 使得P 1 AP B 1 1 B E P AP P E P
P 1 A E P
P 1 A E P A E .
A与B相似 可逆阵P , 使得P 1 AP B
定理1 若n阶矩阵A与B相似, 则A与B的特征多项 式相同, 从而A与B的特征值亦相同.
B E A E .推论 若 n 阶方阵A与对角阵 1 2 n
相似, 则 1 , 2 , , n即是A的n个特征值.
三、利用相似变换将方阵对角化对 n 阶方阵 A , 若可找到可逆矩阵 P