高等数学第三章总结
“高等数学第三章总结”相关的资料有哪些?“高等数学第三章总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高等数学第三章总结”相关范文大全或资料大全,欢迎大家分享。
高等数学第三章
第三章 导数与微分
一、本章提要
1. 基本概念
瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2. 基本公式
基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3. 基本方法
⑴ 利用导数定义求导数;
⑵ 利用导数公式与求导法则求导数; ⑶ 利用复合函数求导法则求导数; ⑷ 隐含数微分法; ⑸ 参数方程微分法; ⑹ 对数求导法;
⑺ 利用微分运算法则求微分或导数.
二、要点解析
问题1 从瞬时速度出发论述导数的实际意义,并列举一些常见变化率.
解析 对于作变速直线运动的质点,若位移变量s与时间变量t之间的函数关系为
s?s(t),当t从t变化到t??t时,在间隔?t内的平均速度为
s(t??t)?s(t),此式只反
?t映了在t点附近速度变化的快慢程度,即为t时刻速度的近似代替量,欲使其过渡到精确值,必须使?t?0,即t时刻瞬时速度为v(t)?lims(t??t)?s(t),也即瞬时速度反映函数
?t?0?ts?s(t)在t时刻函数的变化率(导数),所以导数的实际意义表示函数在此点变化的快慢程
度.
常见的变化率:
⑴ 曲线y?f(x)的切线斜率意义;
dy是纵坐标y对横坐标x的变化率,这是导数的几何 dxd
高等数学第三章检测题
高等数学检测题2-5
专业 班级 姓名 编组
一、填空题
1.设函数y?f(x)在区间[a,b]上满足罗尔定理的条件,则曲线y?f(x)至少有一条 切线.
2.设函数y?f(x)在[a,b]上可导,则在(a,b)内至少有一?使 .
3.设f(x)?x(x?1)(x?2)(x?3)(x?4),则方程f'(x)?0有 个实根.
二.选择题
1.使f(x)?3x2(1?x2)适合罗尔定理的区间是 . (A)(C)[0,1];[0,??);(B)(D)[?1,1];[?2,2];
2.在区间[a,b]上,f'(x)?g'(x),则 .
3.对函数f(x)?x2?x?1,在区间[a,b]上应用拉格朗日中值定理时,所求得的
(A)(C)f(x)?g(x);f(x)?g(x)?0;(B)(D)f(x)?g(x)?C,(C为常数);
f(x)?g(x)?C,(C为常数);?为 .
(A
北大版高等数学第三章 积分的计算及应用答案 第三章总练习题
第三章总练习题
1.为什么用Newton-Leibniz公式于下列积分会得到不正确结果?(1)?1?1??1d?x?d?x?x?e?dx.?e????e?2[?1,1]无界,从而不可积.dx?dx?????xdtanx2?tanx2111(2)?2?0dx.u?tanx在(0,2?)的一些点不可导.2.证明奇连续函数的原函数为偶函数,而偶连续函数的原函数之一为奇函数.证设奇连续函数f的原函数为F, 现在证明F是偶函数.F?(x)?f(x).(F(?x)?F(x))???F?(?x)?F?(x)??f(?x)?f(x)?0,F(?x)?F(x)?C,C?F(?0)?F(0)?0.F(?x)?F(x)?0.设偶连续函数f的原函数为F,现在证明F是奇函数.F?(x)?f(x).(F(?x)?F(x))???F?(?x)?F?(x)??f(?x)?f(x)?0,F(?x)?F(x)?C.设F(0)?0,则C?F(?0)?F(0)?0.F(?x)?F(x)?0.?sinx,x?0,3.f(x)f(x)??3求定积分?x, x?0,解?baf(x)dx??其中a?0,b?0.0a3b0?xba4f(x)dx?a?b0af(x)dx?a4?b0f(x)
高等代数 第三章 线性空间
第三章 线性空间
习题精解
1. 把向量?表成?1,?2,?3,?4的线性组合.
1)??(1,2,1,1)?1?(1,1,1,1),?2?(1,1,?1,?1)
?3?(1,?1,1,?1),?4?(1,?1,?1,1)2)??(0,0,0,1)?1?(1,1,0,1),?2?(2,1,3,1)
?3?(1,1,0,0),?4?(0,1,?1,?1)解 1)设有线性关系
??k1?1?k2?2?k3?3?k4?4
代入所给向量,可得线性方程组
?k1?k2?k3?k4?1?k?k?k?k?2?1234 ??k1?k2?k3?k4?1??k1?k2?k3?k4?1解之,得
k1?因此
5111, k2?, k3??, k4?? 4444???1??2??3??4
2)同理可得
54141414???1??3
2.证明:如果向量组?1,?2,?,?r线性无关,而?1,?2,?,?r,?线性相关,则向量可由?1,?2,?,?r线性表出.
证 由题设,可以找到不全为零的数k1,k2,?,kr?1使
k1?1?k2?2???kr?r?kr?1??0
显然kr?1?0.事实上,若kr?1?0,而k1,k2,?,kr不全为零,使
2013考研数学复习高等数学第三章一元函数积分学
第三章 一元函数积分学
2013考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton –Leibniz)公式 不定
积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用
2013考试要求
1. 理解原函数的概念,理解不定积分和定积分的概念。 2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分与分部积分
法。
3. 会求有理函数、三角函数有理式和简单无理函数的积分。
4. 理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。 5. 了解反常积分的概念,会计算反常积分。
掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。
第一节 一元函数积分学之一(原函数)
一、 原函数的概念及其等价描述
1.概念:设有函数f?x?和可导函
2013考研数学复习高等数学第三章一元函数积分学
第三章 一元函数积分学
2013考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton –Leibniz)公式 不定
积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用
2013考试要求
1. 理解原函数的概念,理解不定积分和定积分的概念。 2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分与分部积分
法。
3. 会求有理函数、三角函数有理式和简单无理函数的积分。
4. 理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。 5. 了解反常积分的概念,会计算反常积分。
掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。
第一节 一元函数积分学之一(原函数)
一、 原函数的概念及其等价描述
1.概念:设有函数f?x?和可导函
大一高等数学第三章第二节罗必塔法则
0 一、 型及 型未定式解法: 洛必达法则 0 定义 如果当x a (或x )时,两个函数f ( x )
与F ( x )都趋于零或都趋于无穷大, 那末极限 f ( x) 0 lim 称为 或 型未定式. x a F ( x ) 0 ( x )tan x 0 ,( ) 例如, lim x 0 x 0 ln sin ax lim ,( ) x 0 ln sin bx
定理 设(1) 当 x 0时,函数 f ( x ) 及 F ( x ) 都趋于零; ( 2) 在 a 点的某领域内(点 a 本身可以除外), f ( x )
及 F ( x ) 都存在且 F ( x ) 0; f ( x ) ( 3) lim 存在(或为无穷大); x a F ( x ) f ( x) f ( x ) 那末 lim lim . x a F ( x ) x a F ( x )定义 这种在一定条件下通过分子分母分别求导再 求极限来确定未定式的值的方法称为洛必达法则.当x 时,以及x a , x 时, 该法则仍然成立.
证 定义辅助函数 f ( x ), f1 ( x )
第三章
第三章 激光与光电子器件 激光器的分类: ① 按工作物质:固体激光器、气体激光器、液体激光器、 半导体激光器、自由电子激光器等 ② 按运转方式:连续激光器、脉冲激光器、超短脉冲激 光器、稳频激光器、可调谐激光器、单模激光器、多 模激光器、锁模激光器、Q开关激光器 ③ 按激光波长:红外激光器、可见光激光器、紫外激光 器、毫米激光器、x射线激光器、γ射线激光器 ④ 按泵浦方式:电激励激光器、光泵浦激光器、核能激 光器、热激励激光器、化学激光器、拉曼自旋反转激 光器、光参量振荡器等 ⑤ 按谐振腔结构:内腔激光器、外腔激光器、环形腔激 光器、折叠腔激光器、光栅腔激光器、光纤激光器、 薄膜激光器、波导激光器、分布反馈激光器等。
3.1 气体激光器 气体激光器是以气体或蒸汽为工作物质的激光器。 它是目前种类最多、波长分步区域最宽、应用最广 的一类激光器,有近万条激光谱线,波长覆盖从紫外到红 外的整个光谱区,目前已经扩展到X射线和毫米波波段。 气体激光器的输出光束质量非常高,其单色性和发 散性均优于固体和半导体激光器,也是目前连续输出功率 最大的激光器。具有转换效率高、结构简单、造价低廉等 优点,得以广泛应用。
一、气体激光器的激励方式 大部分气体激光器是采用
第三章数学规划模型
第三章 数学规划模型
§3.1 引言
优化是我们在工程技术、经济管理等诸多领域中最常遇到的问题之一。结构设计要在满足强度要求的条件下时所用的总重量最轻;编制生产计划要在人力、设备等条件限制下时产品的总利润最高;安排运输方案要在满足物资要求和不超过供应能力条件下时运输总费用最少;确定某种产品如橡胶的原料配方药是它的强度、硬度、变形等多种指标都达到最优。
人们解决这种问题的手段大致有以下几种:一是依靠过去的经验,这看来似乎切实可行,且不担风险,但会融入决策者过多的主观因素从而难以确定所给决策的优越性;二是作大量的实验,这固然真实可靠,却常要耗费太多的资金和人力;三是建立数学模型,求解最优决策。虽然因建模时要作适当的简化可能使结果不一定可行或达到实际上的最优,但是它基于客观的数据,又不需要太大的费用,具有前两种手段无可比拟的优点。如果在数学建模的基础上再辅以适当的经验和实验,就可以得到实际问题的一个比较圆满地解答。在决策科学化、定量化的呼声日渐高涨的今天,这一方法的推广应用无疑是符合时代潮流和形势发展需要的。
一项工程由m个市供电,已知每个施工点对某种材料的需求为r I(单位:吨),施工点的位置坐标为(ai,
高等流体力学第三章
第三章流体动力学基本方程的数学解
3.1平行直线流——精确解流线呈平行直线的流动,称为平行直线流。其特点是流场各点的流速方向是平行的。如果将流动方向作某一个坐标(如x)的方向(可称该坐标为流向坐标),则基本方程会展现为十分简洁的形式,为数学解提拱了很好的条件。
3.1.1平行平板间的定常层流流动设粘度为μ的液体在两平行平板间作定常的定向流动,平板与海平面呈α倾角,平板宽度b与板间距 h之间满足h/b《1。选流向坐标为x轴,按右手系分别选定y,z轴如图3.1所示。在该坐标系下, v u( x, z )i速度矢量质量力矢量 f g sin i g cos kZ L
X
压强
p p( x, z )
h
流体动力学基本方程具体化为: C.E M.E u 0 x
2u 1 p 0 g sin z 2 x0 g cos 1 p z2
(3.1)
在式(3.1)中,非线性的对流项全部消失,使求解动量 u方程的数学难度大为降低。事实上,因 只是z函数, z p u c, p c,即分别为常数。只是 x函数,必有 x z x2 2 2 12
记可积分得到
p p x L
du 1 p ( g sin ) z c1 dz