线性回归模型综述
“线性回归模型综述”相关的资料有哪些?“线性回归模型综述”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性回归模型综述”相关范文大全或资料大全,欢迎大家分享。
多元线性回归模型
第三章 多元线性回归模型
基本概念
(1)多元线性回归模型; (2)偏回归系数;
(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题
1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性
的过程中,哪些基本假设起了作用?
2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?
3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?
X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(
X4)、睡觉()、 娱乐()
)所用时间的关系的研究中,建立如下回归模型:
Y??0??1X1??2X2??3X3??4X4?u
如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?
5.表3-1给出三变量模型的回归结果。
多元线性回归模型
第三章 多元线性回归模型
基本概念
(1)多元线性回归模型; (2)偏回归系数;
(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题
1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性
的过程中,哪些基本假设起了作用?
2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?
3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?
X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(
X4)、睡觉()、 娱乐()
)所用时间的关系的研究中,建立如下回归模型:
Y??0??1X1??2X2??3X3??4X4?u
如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?
5.表3-1给出三变量模型的回归结果。
经典线性回归模型
第二章 经典线性回归模型:双变量线性回归模型 回归分析概述 双变量线性回归模型的参数估计 双变量线性回归模型的假设检验 双变量线性回归模型的预测 实例
引子: 中国旅游业总收入将超过3000亿美 元吗?从2004中国国际旅游交易会上获悉,到2020年,中国旅游 业总收入将超过3000亿美元,相当于国内生产总值的8% 至11%。(资料来源:国际金融报2004年11月25日第二版) ◆是什么决定性的因素能使中国旅游业总收入到2020年达到 3000亿美元? ◆旅游业的发展与这种决定性因素的数量关系究竟是什么?
◆怎样具体测定旅游业发展与这种决定性因素的数量关系?
一、回归与相关(对统计学的回顾)
1. 经济变量间的相互关系◆确定性的函数关系
Y f (X )
◆不确定性的统计关系—相关关系
Y f (X ) ◆没有关系
(ε为随机变量)
2.相关关系◆ 相关关系的描述 相关关系最直观的描述方式——坐标图(散布图)
Y
X
◆相关关系的类型 ● 从涉及的变量数量看简单相关 多重相关(复相关)
● 从变量相关关系的表现形式看线性相关——散布图接近一条直线 非线性相关——散布图接近一条曲线
● 从变量相关关系变化的方向看
多元线性回归模型原理
研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。
计算公式如下:
设随机y与一般变量x1,x2,?xk的线性回归模型为:
y??0??1x1??2x2??kxk??
其中?0,?1,??k是k?1个未知参数,?0称为回归常数,?1,??k称为回归系数;
y称为被解释变量;x1,x2,?xk是k个可以精确可控制的一般变量,称为解释变量。
当p?1时,上式即为一元线性回归模型,k?2时,上式就叫做多元形多元回归模型。?是随机误差,与一元线性回归一样,通常假设
?E(?)?0?2 var(?)???同样,多元线性总体回归方程为y??0??1x1??2x2????kxk
系数?1表示在其他自变量不变的情况下,自变量x1变动到一个单位时引起的因变量y的平均单位。其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。
????x???x?????x ???多元线性样本回归方程为:y01122kk
多元线性回归方程中回归系数的估计同样可以采
实验3 多元线性回归模型
实验3 多元线性回归模型
一、实验名称:多元线性回归模型.
二、实验目的:掌握多元线性回归模型的建模方法,并会利用Matlab作统计分析与检验. 三、实验题目:设某公司生产的商品在市场的销售价格为x1(元/件)、用于商品的广告费用为x2(万元)、销售量为y(万件)的连续12个月的统计数据如表.
月份 1
2 3 4 5 6 7 8 9 10 11 12
销售价格x1
100 90 80 70 70 70 70 65 60 60 55 50
广告费用x2
5.50 6.30 7.20 7.00 6.30 7.35 5.60 7.15 7.50 6.90 7.15 6.50
销售量y 55 70 90 100 90 105 80 110 125 115 130 130
四、实验要求:
1、建立销售量y关于销售价格x1和广告费用x2的多元线性回归模型.
1、绘制散点图,可以直观地看出y与x1,x2分别呈线性关系,所以采用多元线性回归模型:y=β0+β1*x1+β2*x2+ε 源程序: clear
x1=[100;90;80;70;70;70;70;65;60;60;55;50];
x2=[5.50;6.30;7.20;7.00;6.30;7.35;5.60;7.15;7.50
经典线性回归模型(设定与推断)
2 经典线性回归模型
§2.1 概念与记号
1.线性回归模型是用来描述一个特定变量y与其它一些变量x1,…,xp之间的关系。 2.称特定变量y为因变量(dependent variable)、被解释变量(explained variable)、响应变量(response variable)、被预测变量(predicted variable)、回归子(regressand)。
3.称与特定变量相关的其它一些变量x1,…,xp为自变量(independent variable)、解释变量(explanatory variable)、控制变量(control variable)、预测变量(predictor variable)、回归量(regressor)、协变量(covariate)。 4.假定我们观测到上述这些变量的n组值:?yi,xi1,?,xip? (i=1,…,n)。称这n组值为样本(sample)或数据(data)。
§2.2 经典线性回归模型的假定
假定2.1(线性性(linearity))
yi??0??1xi1????pxip??i (i=1,…,n)。 (2.1)
称方程(2.1)为因变量
线性回归分析的数学模型
线性回归分析的数学模型
摘 要
在实际问题中常常遇到简单的变量之间的关系,我们会遇到多个变量同处于一个过程之中,它们之间互相联系、互相制约.这些问题中最简单的是线性回归.线性回归分析是对客观事物数量关系的分析,是一种重要的统计分析方法,被广泛的应用于社会经济现象变量之间的影响因素和关联的研究.由于客观事物的联系错综复杂经济现象的变化往往用一个变量无法描述,故本篇论文在深入分析一元线性回归及数学模型的情况下,又详细地介绍了多元线性回归方程的参数估计和其显著性检验等.全面揭示了这种复杂的依存关系,准确测定现象之间的数量变动.以提高预测和控制的准确度.
本文中详细的阐述了线性回归的定义及其线性模型的简单分析并应用了最小二乘法原理.具体介绍了线性回归分析方程参数估计办法和其显著性检验.并充分利用回归方程进行点预测和区间预测.
但复杂的计算给分析方法推广带来了困难,需要相应的操作软件来计算回归分析求解操作过程中的数据.以提高预测和控制的准确度.从而为工农业生产及研究起到强有力的推动作用.
关键词:线性回归;最小二乘法;数学模型
目 录
第一章 前言………………………………………………………………
2 一元线性回归模型
计量经济学
第二章 经典单方程计量经济学模型: 一元线性回归模型 回归分析概述 一元线性回归模型的参数估计 一元线性回归模型检验 一元线性回归模型预测 实例
计量经济学
§2.1
回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF)
三、随机扰动项四、样本回归函数(SRF)
计量经济学
一、变量间的关系及回归分析的基本概念1. 变量间的关系
(1)确定性关系或函数关系:研究的是确定现 象非随机变量间的关系。
圆面积 f , 半径 半径2(2)统计依赖或相关关系:研究的是非确定现 象随机变量间的关系。
农作物产量 f 气温, 降雨量, 阳光, 施肥量
计量经济学
对变量间统计依赖关系的考察主要是通过相关 分析(correlation analysis)或回归分析 (regression analysis)来完成的正相关 线性相关 统计依赖关系 不相关 相关系数: 有因果关系 无因果关系 回归分析 相关分析 负相关 1 XY 1 正相关 非线性相关 不相关 负相关
计量经济学
注意 ①不线性相关并不意味着不相关。 ②有相关关系并不意味着一定有因果关系。 ③回归分析/相
2 一元线性回归模型
计量经济学
第二章 经典单方程计量经济学模型: 一元线性回归模型 回归分析概述 一元线性回归模型的参数估计 一元线性回归模型检验 一元线性回归模型预测 实例
计量经济学
§2.1
回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF)
三、随机扰动项四、样本回归函数(SRF)
计量经济学
一、变量间的关系及回归分析的基本概念1. 变量间的关系
(1)确定性关系或函数关系:研究的是确定现 象非随机变量间的关系。
圆面积 f , 半径 半径2(2)统计依赖或相关关系:研究的是非确定现 象随机变量间的关系。
农作物产量 f 气温, 降雨量, 阳光, 施肥量
计量经济学
对变量间统计依赖关系的考察主要是通过相关 分析(correlation analysis)或回归分析 (regression analysis)来完成的正相关 线性相关 统计依赖关系 不相关 相关系数: 有因果关系 无因果关系 回归分析 相关分析 负相关 1 XY 1 正相关 非线性相关 不相关 负相关
计量经济学
注意 ①不线性相关并不意味着不相关。 ②有相关关系并不意味着一定有因果关系。 ③回归分析/相
4 多元线性回归模型统计检验
§2.4 多元线性回归模型的 统计检验和区间估计 Statistical Test and Interval Estimation of Multiple Linear Regression Model拟合优度检验 AIC和SC准则 方程的显著性检验(F 检验) 变量的显著性检验(t 检验) 参数估计量的区间估计 预测值的区间估计 受约束回归 参数稳定性检验
说明
由计量经济模型的数理统计理论要求的以多元线性模型为例 包括拟合优度检验、总体显著性检验、变量显 著性检验、偏回归系数约束检验、模型对时间 的稳定性检验、参数估计量的区间估计、预测 值的区间估计、受约束回归。
一、拟合优度检验 (Testing of Simulation Level)1、概念 检验模型对样本观测值的拟合程度 通过构造一个可以表征拟合程度的统计量 来实现。问题:采用普通最小二乘估计方法,已经保证了 模型最好地拟合了样本观察值,为什么还要检验 拟合程度?
2、总体平方和、回归平方和、残差平方和定义
TSS (Yi Y )2 总体平方和(Total Sum of Squares) Y )2 ESS (