matlab傅里叶变换频率谱
“matlab傅里叶变换频率谱”相关的资料有哪些?“matlab傅里叶变换频率谱”相关的范文有哪些?怎么写?下面是小编为您精心整理的“matlab傅里叶变换频率谱”相关范文大全或资料大全,欢迎大家分享。
短时傅里叶变换及其谱图分析
西 南 交 通 大 学 峨 眉 校 区
(作业小论文)
工程测试技术课程设计
短时傅里叶变换及其谱图分
姓名:xxxx 学号:2wwwww 班级:wwww 专业:工程机械
2013.03.20
短时傅里叶变换及其谱图分析
摘要:本文讨论了有噪信号的短时傅里叶变换STFT及其谱围.分析和仿真结果表明,受
白噪声污染的信号的STFT可以无偏估计原信号的STFT,而其谱图可以对愿信号的谱图作有偏
估计,估计方差是有限的,且是时间和频率的函数.在短窗的情况下,求得了该方差上限的 近似表示.
关键词:短时傅里叶变换 谱图 噪声污染信号 估计
1.前言
信号的短时傅里叶变换STFT是最早提出的一种时。频二维表示方法,它采用加窗的复正
弦作为基函数,也称为加窗傅里叶变换。由于它采用单一的分析窗处理所有频率分量,在时-
频平面内所有点上的分辨率是相同的,因而适
按频率抽取的快速傅里叶变换
《数字信号处理》
课程设计报告
按频率抽取的DFT快速算法分析及MATLAB实现
专 业: 通信工程
班 级: 组 次: 姓 名: 学 号:
目录
摘 要…………………………………………………………………… 1 关键字……………………………………………………………………1 0 引言……………………………………………………………………1 1 按频率抽取的DFT快速算法原理……………………………………1 2 DIF-FFT的运算规律及编程思想……………………………………2 2.1 原位计算…………………………………………………………2 2.2 序列的倒序………………………………………………………2 2.3 旋转因子的变换规律……………………………………………2 2.4 蝶形运算规律……………………………………………………4 2.5 编程思想及程序框图……………………………………………4 3 DIF-FFT算法运算量分析……………………………………………5 4 MATLAB程序
实验2 傅里叶变换的MATLAB 实现
实验2 傅里叶变换的MATLAB 实现
一. 实验目的
1. 傅里叶变换的matlab实现。
2. 连续时间信号傅里叶变换的数值计算。 二. 实验原理
1. Matlab的Symbolic Math Toolbox 提供了能直接求解傅里叶变换和逆变换的函数
fourier(_)和ifourier()。
使用上述函数有一个局限性。尽管信号f(t)是连续的,但却不可能表示成符号表达式,而更多的实际测量现场获得的信号是多组离散的数值量f(n),此时也不可能应用fourier( )对f(n)进行处理,而只能应用傅里叶变换的数值计算方法。 2. 傅里叶变换的数值计算方法的理论依据如下:
F?j????f?t?e????i?tdt?lim??0n????f(n?)e??j?n?? (1)
对于一大类信号,当取?足够小时,上式的近似情况可以满足实际需要。若信号f(t)是时限的,则(1)式的n取值就是有限的,设为N,有:
F?k????f(n?)en?0N?1?j?kn?,0?k?N (2)
上式是对(1)中的频率?进行取样,通常: ?k?2?k N?采用matlab实现(2)式时,其要点是要
图像处理之傅里叶变换matlab实现
傅里叶变换
一.实验内容:
1、傅里叶变换
二.实验目的:
1、理解傅里叶变换的原理 2、掌握傅里叶变换的性质
三.实验步骤:
1.首先构造一幅黑白二值图像,在128×128的黑色背景中心产生一个4×4的白
色方块,对其进行傅里叶变换;(Matlab中用fft2实现2D傅里叶变换) 2.把低频分量移到图象中心,而把高频分量移到四个角上;(方法有两种:其
一,在FT以前对测试图象逐点加权(-1)^(i+j);其二,利用FFTSHIFT函数); 3.利用图象增强中动态范围压缩的方法增强2DFT;(Y=C*log(1+abs(X))); 4.构造一幅黑白二值图像,在128×128的黑色背景中令第32行至36行、第
32列至第36列的值为1(即产生一个4×4的白色方块),对其进行傅里叶变换;
5.将上图旋转300,再进行傅里叶变换 (imrotate)
6.构造二幅黑白二值图像,在128×128的黑色背景中分别令第60行至68行、
第60列至第68列的值为1,第64行至65行、第64列至第65列的值为1产生两幅图像,分别对这两幅图像进行傅里叶变换
四、原理分析、技术讨论、回答问题
1、对于第二幅图像(第一步与第四步图像的比较),说明FOURIER变换具有以下
MATLAB的离散傅里叶变换的仿真
应用MATLAB对信号进行频谱分析及滤波
设计目的
要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。
一、设计要求
1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图;
2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明;
3、绘制三种信号的均方根图谱;
4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理
用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。
x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为:
N?1kn?x(n)WNWn?0X(k)=DFT[x(n)]=,k=0,1,...,N-1
1N?12?N?jN?e
逆变换:x(n) =IDFT[X(k)]=
Nn?0?X(k)WN?kn,k=0,1,...,N-1
但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFF
Matlab 离散傅里叶变换 实验报告
陕西科技大学实验报告
班级 信工082 学号 16 姓名 刘刚 实验组别 实验日期 室温 报告日期 成绩 报告内容:(目的和要求,原理,步骤,数据,计算,小结等)
实验三 离散傅立叶变换(DFT)
1.离散傅立叶级数
给定有限长序列[1 2 3 4],延拓为周期N=6的周期序列,并求其DFS。 代码:
N1=6;x1=[1 2 3 4]; N2=length(x2); n1=0:5*N2-1;
x2=[x1,zeros(1,(6-length(x1)))];k=0:5*N2-1;x3=x2(mod(n1,N2)+1) Xk=x3*exp(-j*2*pi/N1).^(n1'*k);
subplot(321),stem(x1,'.');title('原序列')
subplot(322),stem(x3,'.');title('原序列周期延拓') subplot(312),stem(Xk,'.');title('DFS')
subplot(325),stem(abs(Xk),'.'
MATLAB的离散傅里叶变换的仿真
应用MATLAB对信号进行频谱分析及滤波
设计目的
要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。
一、设计要求
1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图;
2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明;
3、绘制三种信号的均方根图谱;
4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理
用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。
x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为:
N?1kn?x(n)WNWn?0X(k)=DFT[x(n)]=,k=0,1,...,N-1
1N?12?N?jN?e
逆变换:x(n) =IDFT[X(k)]=
Nn?0?X(k)WN?kn,k=0,1,...,N-1
但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFF
离散傅里叶变换和快速傅里叶变换
实验报告
课程名称: 信号分析与处理 指导老师: 成绩:__________________
实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 基础实验 同组学生姓名:
第二次实验 离散傅里叶变换和快速傅里叶变换
一、实验目的
1.1掌握离散傅里叶变换(DFT)的原理和实现;
1.2掌握快速傅里叶变换(FFT)的原理和实现,掌握用FFT对连续信号和离散信号进行谱分析的方法。 1.3 会用Matlab软件进行以上练习。
二、实验原理
2.1关于DFT的相关知识
序列x(n)的离散事件傅里叶变换(DTFT)表示为
X(e)?装 j?n????x(n)e??j?n,
如果x(n)为因果有限长序列,n=0,1,...,N-1,则x(n)的DTFT表示为
订 j?X(e)??x(n)e?j?n,
n?0N?1线 x(n)的离散傅里叶变换(DFT)表达式为
X(k)??x(n)en?0N?1?j2?nkN(k?0,1,...,N?1),
序列的N点DFT是序列DTFT在频率区间[0,2π]上的N点灯间隔采样,采样间隔为2π/N。通过DFT,可以完成由一组有限个信号采样值
离散傅里叶变换和快速傅里叶变换
实验报告
课程名称: 信号分析与处理 指导老师: 成绩:__________________
实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 基础实验 同组学生姓名:
第二次实验 离散傅里叶变换和快速傅里叶变换
一、实验目的
1.1掌握离散傅里叶变换(DFT)的原理和实现;
1.2掌握快速傅里叶变换(FFT)的原理和实现,掌握用FFT对连续信号和离散信号进行谱分析的方法。 1.3 会用Matlab软件进行以上练习。
二、实验原理
2.1关于DFT的相关知识
序列x(n)的离散事件傅里叶变换(DTFT)表示为
X(e)?装 j?n????x(n)e??j?n,
如果x(n)为因果有限长序列,n=0,1,...,N-1,则x(n)的DTFT表示为
订 j?X(e)??x(n)e?j?n,
n?0N?1线 x(n)的离散傅里叶变换(DFT)表达式为
X(k)??x(n)en?0N?1?j2?nkN(k?0,1,...,N?1),
序列的N点DFT是序列DTFT在频率区间[0,2π]上的N点灯间隔采样,采样间隔为2π/N。通过DFT,可以完成由一组有限个信号采样值
傅里叶变换
傅里叶变换:
图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。
对图像而言,图像的边缘部分是突变部分,变化较快,因此反应在频域上是高频分量;图像的噪声大部分情况下是高频部分;图像平缓变化部分则为低频分量;也就是说,傅里叶变换提供另外一个角度来观察图像,可以将图像从灰度分布转化到频率分布上来观察图像的特征。
图像进行二维傅里叶变换得到频谱图,就是图像梯度的分布图。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。 傅里叶变换的作用:
(1) 图像增强与图像去噪
绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频—噪音;边缘也是图像的高频分量,可以通过添加高频分量来增强图像的边缘; (2)图像分割之边缘检测 提取图像高频分量 (3)图像特征提取
形状特征:傅里叶描述子
纹理特征:直接通过傅里叶系数来计算纹理特征
其他特征:将提取的特征值进行傅里叶变换使特征具有平移,伸缩、旋转不变形 (4)图像压缩
可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅里叶变换的实变换。
频域中的重要概念:
图像高频分量:图像突变部分;在某些情况下指图像边缘信息,某些情况下指噪音更多是两者的混合;
低频分量:图像变换平缓部分,也就是