高中物理相遇追及问题详解
“高中物理相遇追及问题详解”相关的资料有哪些?“高中物理相遇追及问题详解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中物理相遇追及问题详解”相关范文大全或资料大全,欢迎大家分享。
多次相遇、追及问题及详解
行程问题:多次相遇、追及问题
1、五年级行程问题:多次相遇、追及问题------难度:中难度
甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。已知甲车的速度是 25千米/时,乙车的速度是15千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。求A,B两地的距离?
【分析】:
多次相遇问题,最好把全程分成分数去考虑
甲乙的速度比是25:15=5:3,第一次相遇两车共行了一个全程,其中乙行了 。第三次两车共行了5个全程,乙行了5× = 个全程,第四次相遇两车共行了7个全程,乙行了7× = 个全程,两次路程差是 个全程,所以AB两地相距200千米
2、六年级行程问题:多次相遇、追及问题------难度:中难度
甲、乙二人分别从A﹑B两地同时相向而行,乙的速度是甲的 ,二人相遇后继续行进,甲到B地,乙到A地后立即返回。已知二人第二次相遇到地点距第一次相遇的地点是20千米,那么,A﹑B两地相距多少千米?
【分析】:
第一次相遇,甲乙的路程和是一个全程,甲行的路程是全程的 ,乙行了全程的 ,第二次相遇,甲乙的路程和是3个全程,此时甲行了 ×3= 个全程,两次相遇的距离是 个全程,即20千米,所
多次相遇、追及问题及详解
行程问题:多次相遇、追及问题
1、五年级行程问题:多次相遇、追及问题------难度:中难度
甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。已知甲车的速度是 25千米/时,乙车的速度是15千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。求A,B两地的距离?
【分析】:
多次相遇问题,最好把全程分成分数去考虑
甲乙的速度比是25:15=5:3,第一次相遇两车共行了一个全程,其中乙行了 。第三次两车共行了5个全程,乙行了5× = 个全程,第四次相遇两车共行了7个全程,乙行了7× = 个全程,两次路程差是 个全程,所以AB两地相距200千米
2、六年级行程问题:多次相遇、追及问题------难度:中难度
甲、乙二人分别从A﹑B两地同时相向而行,乙的速度是甲的 ,二人相遇后继续行进,甲到B地,乙到A地后立即返回。已知二人第二次相遇到地点距第一次相遇的地点是20千米,那么,A﹑B两地相距多少千米?
【分析】:
第一次相遇,甲乙的路程和是一个全程,甲行的路程是全程的 ,乙行了全程的 ,第二次相遇,甲乙的路程和是3个全程,此时甲行了 ×3= 个全程,两次相遇的距离是 个全程,即20千米,所
高中物理相遇和追击问题
相遇和追及问题分析
1.相遇和追及问题的实质:研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2.画出物体运动的情景图,理清三大关系(1)时间关系:tA?tB?t0(2)位移关系:sA?sB?s0(3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
3.两种典型追及问题
(1)速度大者(匀减速)追速度小者(匀速)
①当v1=v2时,A末追上B,则A、B永不相遇,此时两者间有最小距离;②当v1=v2时,A恰好追上B,则A、B相遇一次,也是避免相撞刚好追上的临界条件;③当v1>v2时,A已追上B,则A、B相遇两次,且之后当两者速度相等时,两者间有最大距离。
(2)同地出发,速度小者(初速度为零的匀加速)追速度大者(匀速)
①当 v1=v2 时,A、B距离最大;②当两者位移相等时,有 v1=2v2且A追上B。A追上B所用的时间等于它们之间达到最大距离时间的两倍。
4.相遇和追及问题的常用解题方法:画出两个物体运动示意图,分析两个物体的运动性质,找出临界状态,确定它们位移、时间、速度三大关系。 1)基本公式法—根据运动学公式,把时间关系渗透到位移关系和速度关系中列式求解2)图像法—正
高中物理 必修1 相遇和追及问题(提高) 知识点专题讲解
高中物理 必修1 相遇和追及问题(提高) 知识点专题讲解
相遇和追及问题
【学习目标】
1、掌握追及和相遇问题的特点 2、能熟练解决追及和相遇问题 【要点梳理】
要点一、机动车的行驶安全问题: 要点诠释:
1、 反应时间:人从发现情况到采取相应措施经过的时间为反应时间。 2、 反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。
3、 刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。
4、 停车距离与安全距离:反应距离和刹车距离之和为停车距离。停车距离的长短由反应距离和刹车距离
共同决定。安全距离大于一定情况下的停车距离。 要点二、追及与相遇问题的概述 要点诠释:
1、 追及与相遇问题的成因
当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变 化,两物体间距越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题. 2、 追及问题的两类情况 (1)速度小者追速度大者
(2)速度大者追速度小者
说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x0是开始追及以前两物体之间的距离; ③t2-t0=t0-t1;
④v1是前面物体的速度,v2是后面物体的
相遇追及问题
相遇、追及问题
一、 相遇问题
两个物体从不同地点做面对面的运动,即相向运动,相向运动能使两运动物体在途中相遇,它是研究速度和、相遇时间、总距离(总路程)之间的关系,解答相遇问题的关键是要求出两物体在同一时间的速度之和,又称速度和。
例题1:两辆汽车从A、B两地相向开出,甲车每小时行55千米,乙车每小时行45千米,经过3小时两车相遇,A、B两地相距多少千米?
EX1:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?
EX2:甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?
相遇问题中存在的数量关系:速度和 × 相遇时间 = 路程和 路程和 ÷ 相遇时间 = 速度和 路程和 ÷ 速度和 = 相遇时间
例题2:北京到沈阳的铁路长830千米,两辆火车同时相向开出10小时相遇,已知甲车每小时行41千米,乙车每小时行多少千米?
EX1:甲、乙两
高中物理 必修1 相遇和追及问题(提高) 知识点专题讲解
高中物理 必修1 相遇和追及问题(提高) 知识点专题讲解
相遇和追及问题
【学习目标】
1、掌握追及和相遇问题的特点 2、能熟练解决追及和相遇问题 【要点梳理】
要点一、机动车的行驶安全问题: 要点诠释:
1、 反应时间:人从发现情况到采取相应措施经过的时间为反应时间。 2、 反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。
3、 刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。
4、 停车距离与安全距离:反应距离和刹车距离之和为停车距离。停车距离的长短由反应距离和刹车距离
共同决定。安全距离大于一定情况下的停车距离。 要点二、追及与相遇问题的概述 要点诠释:
1、 追及与相遇问题的成因
当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变 化,两物体间距越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题. 2、 追及问题的两类情况 (1)速度小者追速度大者
(2)速度大者追速度小者
说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x0是开始追及以前两物体之间的距离; ③t2-t0=t0-t1;
④v1是前面物体的速度,v2是后面物体的
相遇追及问题
相遇、追及问题
一、 相遇问题
两个物体从不同地点做面对面的运动,即相向运动,相向运动能使两运动物体在途中相遇,它是研究速度和、相遇时间、总距离(总路程)之间的关系,解答相遇问题的关键是要求出两物体在同一时间的速度之和,又称速度和。
例题1:两辆汽车从A、B两地相向开出,甲车每小时行55千米,乙车每小时行45千米,经过3小时两车相遇,A、B两地相距多少千米?
EX1:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?
EX2:甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?
相遇问题中存在的数量关系:速度和 × 相遇时间 = 路程和 路程和 ÷ 相遇时间 = 速度和 路程和 ÷ 速度和 = 相遇时间
例题2:北京到沈阳的铁路长830千米,两辆火车同时相向开出10小时相遇,已知甲车每小时行41千米,乙车每小时行多少千米?
EX1:甲、乙两
高一物理追及和相遇问题
高一物理
匀变速直线运动相遇和追及问题
考点1:追击问题
【例1】物体A、B同时从同一地点,沿同一方向运动,A以10m/s的速度匀速前进,B以2m/s的加速度从静止开始做匀加速直线运动,求A、B再次相遇前两物体间的最大距离.
【变式1】如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t图象,由图象可以看出 ( 〕 A.这两个物体两次相遇的时刻分别是1s末和4s末 B.这两个物体两次相遇的时刻分别是2s末和6s末 C.两物体相距最远的时刻是2s末 D.4s末以后甲在乙的前面
【变式2】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比。
【变式3】(2011·安徽省级示范高中名校联考)甲、乙两辆汽车,同时在一条平直的公路上自西向东运动,开始时刻两车平齐,相对于地面的v-t图象如图所示,关于它们的运动,下列说法正确的是( )
2
A.甲车中的乘客说,乙车先以速
多次相遇和追及问题
3-1-3多次相遇和追及问题
教学目标
1. 学会画图解行程题
2. 能够利用柳卡图解决多次相遇和追及问题 3. 能够利用比例解多人相遇和追及问题
知识精讲
板块一、由简单行程问题拓展出的多次相遇问题
所有行程问题都是围绕“路程?速度?时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.
【例 1】 (难度等级 ※)甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每
秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点? 【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300?10?3000米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了
3000?3.5?1400米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行3.5?4300?200?100米才能回到出发点.
【巩固】 (难度等级 ※)甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是
每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次? 【解析】 1
简单的相遇及追及问题
第七讲 简单的相遇与追及
姓名
追及问题与相遇问题的区别在于运动的方向,及由此而引出的速度和与速度差;共同点是双方所用的时间是相等的。在解答追及问题时,关键是抓住速度差去分析和思考,同时画线段图辅助解题是一种行之有效的方法。
【引入】甲乙两人相距200米,甲每分钟走45米,乙每分钟行55米。几分钟后两人相距500米? 分析与解: 1.反方向运动:
相背:(500-200)÷(45+55)=300/100=3(分钟)
相遇再相背:(500+200)÷(45+55)=700/100=7(分钟) 2.同方向运动:
追上再超过:(500+200)÷(55-45)=700/10=70(分钟) 追不上:(500-200)÷(55-45)=300/10=30(分钟)
【典型例题1】甲乙两人分别从相距20千米的两地同时相向而行,甲每小时走6千米,乙每小时走4千米,两人几小时后相遇?
分析与解:20÷(6+4)=2小时。
【边学边练1】A、B两地相距540千米,一列客车与一列货车分别从A、B两地相向而行,客车每小时行120千米,货车每小时行90千米,已知客车出发1小时后,货车才出发,求货车出发几小时后,两车相遇?
提示与