教室座位选择问题数学建模
“教室座位选择问题数学建模”相关的资料有哪些?“教室座位选择问题数学建模”相关的范文有哪些?怎么写?下面是小编为您精心整理的“教室座位选择问题数学建模”相关范文大全或资料大全,欢迎大家分享。
教室座位选择问题(数学建模)
第十届“新秀杯” 校园数学建模竞赛
论文题目:教室座位选择
队员1 姓名 王杨 学号 2016117557 专业 电气工程 联系方式 18295984767 队员2 母博宇 2016117558 电气工程 13890874956 队员3 李佳峻 2016117577 电气工程 15320282528 摘要
本文研究了关于西南交通大学峨眉校区的两种教室听课最佳座位选择的问题。我们根据题目中所给的示意图以及数据,联系实际,合理假设,建立模型进行求解,旨在找出最适合听课的座位。本篇论文我们通过仔细读题,确认该题属于数学规划最优解模型。
在问题一中:选择最优座位,则需要考虑视角,仰角两个决策指标,所以我们建立直角坐标系,使用向量夹角来表示视角α和仰角β,使用了满意度函数f(β,α)来衡量不同位置同学们满意度,以得到最佳位置。为了消除两项决策指标的量纲不同的影响,我们用变异系数法来衡量各项指标的权重大小,其
?中定义│β-│和αmax-α为两个决策指标,分别求得权重并赋给两个决策变
6量,而满意度函数值f(β,α)函数值越小,则表示该座位越合适。因此我们进行了满意度函数最小值点的求解,解得在普通教室和阶梯教室最小值点均在第二排处取得。
教室座位选择问题(数学建模)
第十届“新秀杯” 校园数学建模竞赛
论文题目:教室座位选择
队员1 姓名 王杨 学号 2016117557 专业 电气工程 联系方式 18295984767 队员2 母博宇 2016117558 电气工程 13890874956 队员3 李佳峻 2016117577 电气工程 15320282528 摘要
本文研究了关于西南交通大学峨眉校区的两种教室听课最佳座位选择的问题。我们根据题目中所给的示意图以及数据,联系实际,合理假设,建立模型进行求解,旨在找出最适合听课的座位。本篇论文我们通过仔细读题,确认该题属于数学规划最优解模型。
在问题一中:选择最优座位,则需要考虑视角,仰角两个决策指标,所以我们建立直角坐标系,使用向量夹角来表示视角α和仰角β,使用了满意度函数f(β,α)来衡量不同位置同学们满意度,以得到最佳位置。为了消除两项决策指标的量纲不同的影响,我们用变异系数法来衡量各项指标的权重大小,其
?中定义│β-│和αmax-α为两个决策指标,分别求得权重并赋给两个决策变
6量,而满意度函数值f(β,α)函数值越小,则表示该座位越合适。因此我们进行了满意度函数最小值点的求解,解得在普通教室和阶梯教室最小值点均在第二排处取得。
数学建模旅游问题
摘要
随着人们生活水平的不断提高,作为“无烟工业”旅游活动便成为人们生活水平的重要指标。本文围绕五一黄金周的旅游问题进行了定量的评估,对即有时间限制又有时间限制的旅游质量问题建立了数学模型,对求解结果进行了分析。
问题要求在只有1000元的旅游费用且在7天之内的条件下游览尽可能多的城市。首先,我们对预选的旅游景点之间消耗的费用和时间进行了分析。由于约束条件不仅要求费用不大于1000而且旅游时间在7天之内,因此,我们从长途汽车站和火车车次中选取费用最低且最节约时间的路线并记录了最优行程费用表。另外,由于时间的限制,因此,需引入0-1变量表示是否游览某个景点,根据求解最优Hamilton回路算法——三边交换调整法,以费用和时间为参考量,我们建立了一个适用于本问题最优规划模型,得出最优旅游路线①→⑥→⑤→④→③→⑧→⑩→①。
关键词:三边交换调整法 最优旅游路线 Matlab程序 0—1模型
1
问题重述
旅游路线安排计划
黄金周又到了,希望安排出外旅游。你要考虑的因素很多。首先,你得考虑时间有限(7天);其次要考虑费用问题:根据有限的费用安排你的交通方式。当然,还要考虑出游的乐趣,希望多走几个景点。还要考虑劳逸结合,如较远的地方如坐
数学建模 救援问题
湖南第一师范学院
HUNAN FIRST NORMAL UNIVERSITY
《线性规划与数学建模》
考查论文
论文题目: 紧急救援问题
组员1 组员2
姓 名 专业班级 及学号 数学班05号 分工 成绩评定 13级624分析问题、模型的陈淑月 建立及求解、撰写论文 建立及求解、撰写论文 13级624分析问题、模型的向云 数学班40号 摘要
本文研究在一定时间内运送医务人员到指定地点的优化设计问题。分析问题可将本文中的三个问题划分为三个阶段,并利用逐渐优化的模型进行求解。
第一个问题是在指定时间内完成人员的运送问题,通过分析,运用简单的计算方法就能马上得出结果:按此方案,时间超过三小时,因此他们不能按时到达。
然后针对问题二,由于题目中已给出部分条件,问题二则变成了追及和相遇问题,解决这类问题常采用分段求解法。我们通过对相遇和追及问题及其过程进行分析,得出这种方案能够使全部医护人员按时到达村庄。
针对问题三,文中详细讨论了运送医务人员的策略和方法,并进一步在问题上要求建立一个优化模型,以优化其策略,并且对其求解。在优化模型时需要采用不同于前一二题的思维方式,在改变思维方式后,会使问题变得更加清晰。我们可以
数学建模:投资问题
投资的收益与风险问题
摘要
对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。
本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略”,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。然后分别使用Matlab的内部函数linprog,fminmax,fmincon对不同的风险水平,收益水平,以及偏好系数求解三个模型。 关键词:组合投资,两目标优化模型,风险偏好
2.问题重述与分析
3.市场上有种资产(如股票、债券、?)()供投资者选择,某公司有数额为的一笔相当大的资金可用作一个时期的投资。公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买的平均收益率为,并预测出购买的风险损失率为。考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的中最大的一个风险来度量。
购买要付交易费,费率为,并且当购买额不超过给定值时,交易
数学建模旅游问题
摘要
随着人们生活水平的不断提高,作为“无烟工业”旅游活动便成为人们生活水平的重要指标。本文围绕五一黄金周的旅游问题进行了定量的评估,对即有时间限制又有时间限制的旅游质量问题建立了数学模型,对求解结果进行了分析。
问题要求在只有1000元的旅游费用且在7天之内的条件下游览尽可能多的城市。首先,我们对预选的旅游景点之间消耗的费用和时间进行了分析。由于约束条件不仅要求费用不大于1000而且旅游时间在7天之内,因此,我们从长途汽车站和火车车次中选取费用最低且最节约时间的路线并记录了最优行程费用表。另外,由于时间的限制,因此,需引入0-1变量表示是否游览某个景点,根据求解最优Hamilton回路算法——三边交换调整法,以费用和时间为参考量,我们建立了一个适用于本问题最优规划模型,得出最优旅游路线①→⑥→⑤→④→③→⑧→⑩→①。
关键词:三边交换调整法 最优旅游路线 Matlab程序 0—1模型
1
问题重述
旅游路线安排计划
黄金周又到了,希望安排出外旅游。你要考虑的因素很多。首先,你得考虑时间有限(7天);其次要考虑费用问题:根据有限的费用安排你的交通方式。当然,还要考虑出游的乐趣,希望多走几个景点。还要考虑劳逸结合,如较远的地方如坐
数学建模 救援问题
湖南第一师范学院
HUNAN FIRST NORMAL UNIVERSITY
《线性规划与数学建模》
考查论文
论文题目: 紧急救援问题
组员1 组员2
姓 名 专业班级 及学号 数学班05号 分工 成绩评定 13级624分析问题、模型的陈淑月 建立及求解、撰写论文 建立及求解、撰写论文 13级624分析问题、模型的向云 数学班40号 摘要
本文研究在一定时间内运送医务人员到指定地点的优化设计问题。分析问题可将本文中的三个问题划分为三个阶段,并利用逐渐优化的模型进行求解。
第一个问题是在指定时间内完成人员的运送问题,通过分析,运用简单的计算方法就能马上得出结果:按此方案,时间超过三小时,因此他们不能按时到达。
然后针对问题二,由于题目中已给出部分条件,问题二则变成了追及和相遇问题,解决这类问题常采用分段求解法。我们通过对相遇和追及问题及其过程进行分析,得出这种方案能够使全部医护人员按时到达村庄。
针对问题三,文中详细讨论了运送医务人员的策略和方法,并进一步在问题上要求建立一个优化模型,以优化其策略,并且对其求解。在优化模型时需要采用不同于前一二题的思维方式,在改变思维方式后,会使问题变得更加清晰。我们可以
数学建模 运输问题 送货问题
数学建模论文
题 目: 送货问题 学院(直属系 数学与计算机学院 年级、 专业: 2010级信息与计算科学 姓 名:杨尚安 指 导 教 师: 蒲 俊 完 成 时 间: 2012年 3 月 20 日
摘要
本文讨论的是货运公司的运输问题,根据各公司需求和运输路线图,建立了线性规划模型和0-1规划模型,对货运公司的出车安排进行了分析和优化,得出运费最小的调度方案。
对于问题一,由于车辆在途中不能掉头,出车成本固定,要使得总成本最小,即要使在一定的车辆数下,既满足各公司的需求,又要尽量减小出车次数。故以最小出车数为目标函数,建立线性规划模型,并通过lingo求解,得出最小出车数27次。接着考虑车的方向问题,出车分为顺时针和逆时针,建立0-1模型,并求解,得出满足问题一的调度方案(见附录表1)。
对于问题二,车辆允许掉头,加上车辆装载货物和空装时运输费不同,,要使总成本最小,故可以通过修改原目标函数,建立线性规划模型和0-1规划模型,求解,
食堂就餐问题(数学建模)
学校食堂就餐问题
参赛学院:电子科大成都学院 参赛队号: 参赛队员:曾胜泓
0005
曾传亮 李津源
摘要:
俗话说“民以食为天”,本文针对我校较为突出的用餐供求不平衡现象,运用数学建模的方法建立合理的满意度模型来评价食堂的服务质量,预测师生在三个不同的餐厅就餐的分布规律,建立模型,定量地刻划就餐者在早餐,午餐和晚餐以及周一至周五,周末和节假日的就餐人数,在建模中整体采用概率统计的思想,在第一问及第二问中设计调查表,进行统计,第一问中收集同学们对食堂评价信息,用模糊数学的方法处理,得到最终的满意度评价,在第二问中,在统计的基础上运用回归方程构建模型,用MATLAB软件计算,计算概率的方法预测人数。在一二问的基础上形成第三问的报告提交后勤部门。
一、问题重述
背景:
我校目前有教职工、师生约16000人,三个食堂,其中正阳,晨曦食堂分布于蓝区,霞光食堂分布于红区且三者间相距较远,学生及食堂作息时间如下
上午7:40 下课 8:15上课 11:00开饭
物质调运问题数学建模
防洪物资调运问题
姓名:夏茂江 学号:332010080801004 姓名:吴帆 学号:332010080801009 姓名:丁宇 学号:332010080801006
摘要
防洪物资调运问题实质是个运筹学网络规划中的最短路问题。由于灾害发生时间和地点等各种因素的影响,具有较大随机性,我们结合实际情况,对其建立了相应的模型。
我们建的模型主要是考虑以最短时间或者最经济的调运方案将防洪物资进行分配,并且满足一定的要求。使用图论的思想将交通网络图转化为数学图形,比用图论的方法求出各企业到各储备库和仓库的最经济的路线和最短的路线。在进行物资调运的过程中,还是按照先满足储备库达到预测库存为目标一,使所有的仓库达到预测库存为目标二,让所有仓库和储备库达到最大库存为目标三分为三个阶段。第一阶段可以假设有足够的能力一次性运达,第二阶段和第三阶段还要考虑企业的生产能力。
以上面的方法建立了模型,求得20天后的各库存量就比较容易了。根据前面的建立的模型我们根据路程最短为原则选取路线算出20天后的各仓库包括储备库的库存量。
根据第问题二的调运方案中的调运路线看是否经过中断路段,如果不经过则调运方案时可行的,如果经过那么要考虑