半导体材料性质和功能的应用
“半导体材料性质和功能的应用”相关的资料有哪些?“半导体材料性质和功能的应用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“半导体材料性质和功能的应用”相关范文大全或资料大全,欢迎大家分享。
半导体材料硅的基本性质
半导体材料硅的基本性质
一.半导体材料
1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下:
图1 典型绝缘体、半导体及导体的电导率范围
1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下:
元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1) 二元化合物 GaAs — 砷化镓 SiC — 碳化硅
2) 三元化合物
AlGa11As — 砷化镓铝
AlIn11As — 砷化铟铝
1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:
本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。
1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:
施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。
受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。
图1.1 (a)带有施主(
半导体材料硅的基本性质 - 图文
半导体材料硅的基本性质
一.半导体材料
1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下:
图1 典型绝缘体、半导体及导体的电导率范围
1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下:
元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1) 二元化合物 GaAs — 砷化镓 SiC — 碳化硅
2) 三元化合物
AlGa11As — 砷化镓铝
AlIn11As — 砷化铟铝
1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:
本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。
1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:
施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。
受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。
图1.1 (a)带有施主(
半导体材料
发光材料的发展及研究
庞雪
(贵州大学 大数据与信息工程学院)
摘要: 发光材料是光电信息功能材料领域的研究热点之一。本文着重是关于现有的纳米发光材料、小分子有机电致发光材料、树枝状有机电致发光材料、芴类电致发光材料的发展与研究情况。介绍了国内外在研究发光材料方面所取得的一些最新进展,并对一些有待进一步研究的问题做了展望。 关键词: 发光材料
Abstract: The development of luminescent materials is one of the forefronts and hot areas of the optoelectronic information materials. This paper is about the existing
luminescence
surface
modification,
organic
small
molecular
electroluminescent materials, dendrimers electroluminescent materials, fluorene-based electroluminescent materials develop
半导体材料术语1
3.1 受主 acceptor
半导体中的一种杂质,她接受从价带激发的电子,形成空穴导电。 3.2 电阻率允许偏差 allowable resistivity tolerance
晶片中心点或晶锭断面中心点的电阻率与标称电阻率的最大允许差值,它可以用标称值的百分数来表示。
3.3 厚度允许偏差 allowable thickness tolerance
晶片的中心点厚度与标称值的最大允许差值。 3.4 各向异性 anisotropic
在不同的结晶学方向有不同物理特性。又称非各向同性,非均质性。
3.5 各向异性腐蚀anisotropic etch
沿着特定的结晶学方向,呈现腐蚀速率增强的一种选择性腐蚀。 3.6 退火 annealing
改变硅片特性的热过程。 3.7 退火片 annealing wafer
在惰性气氛或减压气氛下由于高温的作用在近表面形成一个无缺陷(COP)区得硅片。
3.8 脊形崩边 apex chip
从晶片边缘脱落的任何小块材料的区域。该区域至少含有2个清晰的内界面,而形成一条或多条清晰交叉线。 3.9 区域沾污 area contamination
在半导体晶片上,非有意地附加到晶片表面上的物质,它的线度远大于局部
半导体器件物理金属-半导体接触和MES FET
第八章 金属/半导体接触和MESFET
自从Lilienfeld和Heil在1930年提出场效应晶体管(FET)的概念起,直到20世纪50年代半导体材料工艺发展到一定水平后才做出了可以实际工作的器件。所谓场效应就是利用电场来调制材料的电导能力,从而实现器件功能。除了前面讨论过的MOS、MNOS、MAOS、MFS等都属于场效应器件外,还发展了结型场效应管(J-FET), 肖特基势垒栅场效应管(MES FET)等。本章从金属与半导体接触出发,讨论MES FET的结构和工作原理。
8.1. 肖特基势垒和欧姆接触 8.1.1. 肖特基势垒
当金属和半导体接触时,由于金属的功函数与半导体的功函数不同,在接触的界面处存在接触电势差,就会形成势垒,通常称为肖特基势垒。下面以金属与n型半导体接触为例来讨论肖特基势垒的特性。
(1) 理想情况:假定接触处的半导体表面不存在表面态,图8.1(a)是金属与半导体接触前的能带图(非平衡条件下,其中qφm和qφ
S
分别为金属和半导体的功
1
图8.1
函数,qχ为半导体的电子亲和(势)能。功函数定义为将一个电子从Fermi能级移到材料外面(真空能级)所需要的能量,电子亲和能是将一个电子从导带底移到真空能
半导体器件物理金属-半导体接触和MES FET - 图文
第八章 金属/半导体接触和MESFET
自从Lilienfeld和Heil在1930年提出场效应晶体管(FET)的概念起,直到20世纪50年代半导体材料工艺发展到一定水平后才做出了可以实际工作的器件。所谓场效应就是利用电场来调制材料的电导能力,从而实现器件功能。除了前面讨论过的MOS、MNOS、MAOS、MFS等都属于场效应器件外,还发展了结型场效应管(J-FET), 肖特基势垒栅场效应管(MES FET)等。本章从金属与半导体接触出发,讨论MES FET的结构和工作原理。
8.1. 肖特基势垒和欧姆接触 8.1.1. 肖特基势垒
当金属和半导体接触时,由于金属的功函数与半导体的功函数不同,在接触的界面处存在接触电势差,就会形成势垒,通常称为肖特基势垒。下面以金属与n型半导体接触为例来讨论肖特基势垒的特性。
(1) 理想情况:假定接触处的半导体表面不存在表面态,图8.1(a)是金属与半导体接触前的能带图(非平衡条件下,其中qφm和qφ
S
分别为金属和半导体的功
1
图8.1
函数,qχ为半导体的电子亲和(势)能。功函数定义为将一个电子从Fermi能级移到材料外面(真空能级)所需要的能量,电子亲和能是将一个电子从导带底移到真空能
LED半导体照明的发展与应用
LED半导体照明的发展与应用
者按:半导体技术在上个世纪下半叶引发的一场微电子革命,催生了微电子工业和高科技IT产业,改变了整个世界的面貌。今天,化合物半导体技术的迅猛发展和不断突破,正孕育着一场新的革命——照明革命。新一代照明光源半导体LED,以传统光源所没有的优点引发了照明产业技术和应用的革命。半导体LED固态光源替代传统照明光源是大势所趋。1、LED半导体照明的机遇
(1)全球性的能源短缺和环境污染在经济高速发展的中国表现得尤为突出,节能和环保是中国实现社会经济可持续发展所急需解决的问题。作为能源消耗大户的照明领域,必须寻找可以替代传统光源的新一代节能环保的绿色光源。
(2)半导体LED是当今世界上最有可能替代传统光源的新一代光源。
其具有如下优点:
①高效低耗,节能环保;
②低压驱动,响应速度快安全性高;
③固体化封装,耐振动,体积小,便于装配组合;
④可见光区内颜色全系列化,色温、色纯、显色性、光指向性良好,便于照明应用组合;
⑤直流驱动,无频闪,用于照明有利于保护人眼视力;
⑥使用寿命长。
(3)现阶段LED的发光效率偏低和光通量成本偏高是制约其大规模进入照明领域的两大瓶颈。目前LED的应用领域主要集中在信号指示、智能显示、汽车灯具、景观照明和特殊照明
半导体制冷应用前景论文
半导体制冷应用前景论文
应用能源技术 2007年第6期(总第114期)32
半导体制冷空调器的应用前景
张芸芸,李茂德,徐纪华
(同济大学机械工程学院,上海200092)
摘 要:介绍了半导体制冷空调器的工作原理、基本结构和特点,指出了半导体制冷效率提高的主要途径,阐述了半导体制冷空调器的发展现状和应用前景。
关键词:半导体制冷;空调器;制冷效率中图分类号:TU831.3 文献标识码:A 文章编号:1009-3230(2007)06-0032-03
ApplicationprospectofsemiconductorZHANGYu-yu,LIMao-de,XJi-(DepartmentofMechanicalEngineering,,200092,China)Abstract:Thisarticleintroducestheandcharacteristicsofthesemiconductorrefrigerationairconditionerstatusandapplicationprospect.Fromthisarticlewecanfindtherefrigerationefficiency
石墨烯半导体器件领域应用
石墨烯半导体器件领域应用
摘要:鉴于石墨烯机械稳定性高、化学性质稳定、透光率高,而且具有高效的电子迁移率,将会在未来的光电子器件中作为透明传导薄膜发挥越来越重要的作用,尤其是在目前火热研究的半导体器件领域。
关键词:驰飞超声波;超声波纳米制备装置;石墨烯
石墨烯是一种二维晶体管,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”,的性质和相对论性的中微子非常相似。人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯
硅基集成电路芯片技术正在逼近摩尔定律的物理极限,于是半导体纳米材料与技术成了纳米科技中研究最为活跃、应用最为广泛的前沿领域。二维纳米材料石墨烯的发现为新型半导体器件的设计与制备注入了新活力。科学家预言石墨烯可望替代硅材料成为后摩尔时代半导体器件发展的重要角色。
实验室已经发展了多种石墨烯的制备方法,如化学气相沉积法、液相剥离法、氧化还原石墨法、热分解法。其中氧化还原石墨法已比较成熟,氧化石墨的层间距为0
石墨烯半导体器件领域应用
石墨烯半导体器件领域应用
摘要:鉴于石墨烯机械稳定性高、化学性质稳定、透光率高,而且具有高效的电子迁移率,将会在未来的光电子器件中作为透明传导薄膜发挥越来越重要的作用,尤其是在目前火热研究的半导体器件领域。
关键词:驰飞超声波;超声波纳米制备装置;石墨烯
石墨烯是一种二维晶体管,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”,的性质和相对论性的中微子非常相似。人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯
硅基集成电路芯片技术正在逼近摩尔定律的物理极限,于是半导体纳米材料与技术成了纳米科技中研究最为活跃、应用最为广泛的前沿领域。二维纳米材料石墨烯的发现为新型半导体器件的设计与制备注入了新活力。科学家预言石墨烯可望替代硅材料成为后摩尔时代半导体器件发展的重要角色。
实验室已经发展了多种石墨烯的制备方法,如化学气相沉积法、液相剥离法、氧化还原石墨法、热分解法。其中氧化还原石墨法已比较成熟,氧化石墨的层间距为0