初一数学上册方程应用题
“初一数学上册方程应用题”相关的资料有哪些?“初一数学上册方程应用题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初一数学上册方程应用题”相关范文大全或资料大全,欢迎大家分享。
初一数学上册应用题大全
初一数学上册应用题大全
1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员? 3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少 5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间各多少人?
6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,已知两人在上午8时同时出发,到上午10时,两人还相距
36千米,到中午12时,两人又相距36千米,求A.B两地间的路程? 7.甲、乙两车长度均为180米,若两列
初一数学上册应用题大全
初一数学上册应用题大全
1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员? 3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少 5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间各多少人?
6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,已知两人在上午8时同时出发,到上午10时,两人还相距
36千米,到中午12时,两人又相距36千米,求A.B两地间的路程? 7.甲、乙两车长度均为180米,若两列
初一数学应用题3
,初一数学应用题
姓名___________
列方程或列方程组解应用题:
1、 某厂向工商银行申请甲、乙两种贷款,共计20万元,每年需付利息2.7万元.甲种贷款年利率为12%,乙种贷款年利
率为14%.甲、乙两种贷款的金额各多少?
2、 某商贩以每件135元售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%.那么该商贩的这笔生意赚(或
亏)了多少?
3、 一家公司向银行贷款1200万元,年利率为10%(不计复利).用这笔贷款购买一套进口设备,生产某商品,每箱商品
的生产成本为100元.销售价为150元,综合税率为售价的10%,预计每年能产销80000箱.若用所得纯利润偿还贷款本利,需要几年才能还清?
4、 某人储蓄100元钱,当时一年息为7.47%,三年息为8.28%(均不计复利).甲种存法:先存一年,到期后连本带利再
存一年,到期后再连本带利存一年;乙种存法:存三年;哪种存法盈利多?多多少?
5、 两个班的学生72人去工地参加挖土和运土的义务劳动,如果每人每天平均挖土3方或运土5方,那么应怎样分配挖
土和运土的人数,正好使挖出的土及时运走?
6、 某车间有工人42名,每人每分能生产2个螺栓或3个螺帽,应分配多少工人生产
初一数学上册一元一次方程应用题总复习
一元一次方程
初一数学应用题
列方程或列方程组解应用题:
1 某厂向工商银行申请甲、乙两种贷款,共计20万元,每年需付利息2.7万元.甲种贷款年利率为12%,乙种贷款年利率为14%.甲、乙两种贷款的金额各多少?
2 某商贩以每件135元售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%.那么该商贩的这笔生意赚(或亏)了多少?
3 一家公司向银行贷款1200万元,年利率为10%(不计复利).用这笔贷款购买一套
进口设备,生产某商品,每箱商品的生产成本为100元.销售价为150元,综合税率为售价的10%,预计每年能产销80000箱.若用所得纯利润偿还贷款本利,需要几年才能还清?
4 某车间有工人42名,每人每分能生产2个螺栓或3个螺帽,应分配多少工人生产
螺栓,多少工人生产螺帽,才能使生产出的螺栓和螺帽恰好配套(一个螺栓配两个螺帽)?
5 有盐的质量分数为15%的盐水20千克,要使盐的质量分数提高到20%,需要加盐多少千克?
6、甲、乙两人一起生产一批零件,经20天完成任务,但乙曾在中途请假5天已知甲每天比乙多做3个,于是乙做的零件恰好
7、 甲、乙两人于上午8:00分别从一条公路的A,B两地相向而行,到8:30两人之间路
程缩短到10千米,到10:20两人之
初一数学上册一元一次方程应用题总复习
初一数学应用题
列方程或列方程组解应用题:
1 某厂向工商银行申请甲、乙两种贷款,共计20万元,每年需付利息2.7万元.甲种贷款年利率为12%,乙种贷款年利率为14%.甲、乙两种贷款的金额各多少?
2 某商贩以每件135元售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%.那么该商贩的这笔生意赚(或亏)了多少?
3 一家公司向银行贷款1200万元,年利率为10%(不计复利).用这笔贷款购买一套
进口设备,生产某商品,每箱商品的生产成本为100元.销售价为150元,综合税率为售价的10%,预计每年能产销80000箱.若用所得纯利润偿还贷款本利,需要几年才能还清?
4 某车间有工人42名,每人每分能生产2个螺栓或3个螺帽,应分配多少工人生产
螺栓,多少工人生产螺帽,才能使生产出的螺栓和螺帽恰好配套(一个螺栓配两个螺帽)?
5 有盐的质量分数为15%的盐水20千克,要使盐的质量分数提高到20%,需要加盐多少千克?
6、甲、乙两人一起生产一批零件,经20天完成任务,但乙曾在中途请假5天已知甲每天比乙多做3个,于是乙做的零件恰好
7、 甲、乙两人于上午8:00分别从一条公路的A,B两地相向而行,到8:30两人之间路
程缩短到10千米,到10:
初一数学上学期列方程解应用题练习题
列方程解应用题练习及答案一、填空题(每小题3分,共18分) 1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑8米,乙每秒钟跑6米.
(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;(2)两人
同时同地同向而行时,经过__________秒钟两人首次相遇.
2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,
实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树
__________棵.
3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正
方形的边长少2(π-2)米,请问这根绳子的长度是__________米.
4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为
每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.
5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,
则这个两位数是__________.
6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.
二、选择题(每小题3分,共24分)
7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的
初一数学上册一元一次方程应用题100道问题补充(含答案)
初一数学上册一元一次方程应用题100道问题补充:
第3章 一元一次方程全章综合测试(时间90分钟,满分100分) 一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______. 2.若x= -1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 2x+10的值互为相反数.
4.已知x的1/2与x的3倍的和比x的2倍少6,列出方程为________. 5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元. 7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成. 二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ). A.0 B.1 C.-2 D.- 10.方程│3x│=18的解的情况是(
初一数学经典应用题汇总,考试最常见
初一经典应用题汇总
1、绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示: 类别 进价(元/台) 售价(元/台) 冰箱 2 320 2 420 彩电 1 900 1 980 (1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买 了冰箱、彩电各一台,可以享受多少元的政府补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的①请你帮助该商场设计相应的进货方案;
②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少? 解:
(1) (2420+1980)×13%=572
答: 可以享受政府572元的补贴.
(2) ①设冰箱采购x台,则彩电采购(40-x)台,根据题意,得
2320x+1 900(40-x)≤85000,
.
x≥(40-x).
解不等式组,得 ∵x为正整数. ∴x= 19,20,21.
≤x≤
第 1 页 共 1 页
初一数学经典应用题汇总,考试最常见
初一经典应用题汇总
1、绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示: 类别 进价(元/台) 售价(元/台) 冰箱 2 320 2 420 彩电 1 900 1 980 (1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买 了冰箱、彩电各一台,可以享受多少元的政府补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的①请你帮助该商场设计相应的进货方案;
②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少? 解:
(1) (2420+1980)×13%=572
答: 可以享受政府572元的补贴.
(2) ①设冰箱采购x台,则彩电采购(40-x)台,根据题意,得
2320x+1 900(40-x)≤85000,
.
x≥(40-x).
解不等式组,得 ∵x为正整数. ∴x= 19,20,21.
≤x≤
第 1 页 共 1 页
人教版初一数学上册大纲
篇一:人教版初一数学上册知识点归纳总结
第一章有理数
1.有理数:
(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数,整数和分数统称有理数. p
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
???正整数?正整数正有理数??整数?零?正分数?????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数
???负整数?正分数?分数??负有理数??负分数?负分数??
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-(a-b+c)= -a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.
(4)相反数