模拟退火算法 蚁群算法

“模拟退火算法 蚁群算法”相关的资料有哪些?“模拟退火算法 蚁群算法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“模拟退火算法 蚁群算法”相关范文大全或资料大全,欢迎大家分享。

模拟退火算法

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

模拟退火算法

摘要:模拟退火算法是一种新的随机搜索方法,它来源于固体退火原理,基于MetropoliS接受准则,与以往的近似算法相比,具有以一定的概率接受恶化解,引进算法控制参数,隐含并行性等特点;模拟退火算法应用范围很广,其应用需要满足三方面的要求,具有描述简单、使用灵活、运行效率高和较少受初始条件约束等优点,然而收敛速度慢,执行时间长,特别适合并行计算。 关键词:模拟退火算法来源;基本思想;特点;一般要求;优缺点

1.引子

在科学与工程计算中,经常发生的一个问题是在Rn中或者是在一个有界区域上求某个非线性函数f(x)的极小点。在f(x)可导时,一个最基本的算法就是最速下降法。这一方法从某一选定的初值开始,利用如下公式进行迭代,即

xn 1 xn n f(xn)

此处 f表示函数梯度, n是一个与迭代步数有关的参数,它的适当选取,

保证每步迭代均使函数值下降。除此之外,还存在多种寻求函数极小的算法。然而以速降法为代表的传统算法具有共同的缺点,它们都不保证求得全局极小,只能保证收敛到一个由初值x0决定的局部极小点。而模拟退火算法的出现很好地解

决了这个问题。

2.SA算法的起源 模拟退火算法来源于固体退火原理,其核心思想与热力学的原理极为类似,尤其相似于液

蚁群算法与模拟退火算法对旅游路线问题的探究(附matlab程序)

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

蚁群算法与模拟退火算法对旅游路线问题的探究

张煊 张恒伟 徐晓辉

摘要: 本文针对旅游中国34个城市的路线最优化问题,收集各城市经纬度坐标和实际城市间火车票与飞机票,在此大量数据的基础之上,采用蚁群算法和模拟退火算法进行启发式搜索,就实际问题给出了合理最优的旅行路线和订票方案。

按照问题要求,首先建立了城市旅行网络,同时对网络图赋权,对数据进行了收集和简单的处理,得到了经纬度坐标、火车票矩阵、飞机票矩阵及其对应的时间矩阵。

对于问题(1),我们根据各城市经纬度坐标,利用经纬度知识和球体的几何知识,计算出各城市之间的距离,得到各个城市之间的距离矩阵,分别采用蚁群算法与模拟退火算法搜索,将结果比较得到最短旅行路线为:哈尔滨—长春—沈阳—天津—北京—呼和浩特—太原—石家庄—济南—郑州—西安—银川—兰州—西宁—乌鲁木齐—拉萨—昆明—成都—重庆—贵阳—南宁—海口—广州—澳门—香港—台北—福州—南昌—长沙—武汉—合肥—南京—杭州—上海—哈尔滨,旅行路线总长为1.6013万千米。

在问题(2)的求解中,首先用城市旅行网络的车费价格代替城市之间距离,重新赋权,在模型Ⅰ的基础上,利用最小费用矩阵,采用蚁群算法和模拟退火算法搜索,比较计算结果得到最经济的订票方案

模拟退火算法综述

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

综合性介绍模拟退火算法

                 《微计算机信息》1998年第14卷第5期

模拟退火算法综述

 A

SummaryOnTheSimulatedAnnealingAlgorithm

(434104 湖北荆州师范高等专科学校计算机系) 谢云

【摘要】本文综合介绍模拟退火算法的原理、实现形式、渐近收敛性、应用及其并行策略,对模拟退火算法给出一个简明、全面、客观的综合评价。

关键词:模拟退火算法,组合优化问题,NP完全问

题,并行算法

Abstract:Inthispaper,asummaryonprinciple,real2izableform,asymptoticconvergence,applicatiparalleltacticsofthesimalgoisgiven.A,,psiisgiven.ngAlgorithm,

CobinatorialOptimizationProblem,NondeterministicPolynomialComplete

Problem,ParallelAlgorithm

于固体退火过程:将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达

Matlab模拟退火算法

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

Matlab模拟退火算法——走过数模
模拟退火算法

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

模拟退火算法的模型

模拟退火算法可以分解为解空间、目标函数和初始解三部分。

 模拟退火的基本思想

  (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L

  (2) 对k=1

遗传,模拟退火,蚁群三个算法求解TSP的对比 - 图文

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

数学与统计学院

智能计算及应用课程设计

设计题目: 智能计算解决旅行商问题

摘要

本文以遗传算法、模拟退火、蚁群算法三个算法解决旅行商问题,将三个算法进行比较分析。目前这三个算法广泛应用于各个领域中,本文以31个城市为例,运用遗传算法、模拟退火、蚁群算法分别进行了计算,将他们的计算结果进行了比较分析。

关键词: 遗传算法 模拟退火 蚁群算法 旅行商问题

背景:

遗传算法:

20世纪60年代初,美国Michigan大学的John Holland教授开始研究自然和人工系统的自适应行为,在从事如何建立能学习的机器的研究过程中,受达尔文进化论的启发,逐渐意识到为获得一个好的算法仅靠单个策略建立和改进是不够的,还要依赖于一个包含许多候选策略的群体的繁殖,从而提出了遗传算法的基本思想。

20世纪60年代中期,基于语言智能和逻辑数学智能的传统人工智能十分兴盛,而基于自然进化思想的模拟进化算法则遭到怀疑与反对,但Holland及其指导的博士仍坚持这一领域的研究。Bagley发表了第一篇有关遗传算法应用的论文,并首先提出“遗传算法”这一术语,在其博士论文中采用双倍体编码,发展

遗传,模拟退火,蚁群三个算法求解TSP的对比 - 图文

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

数学与统计学院

智能计算及应用课程设计

设计题目: 智能计算解决旅行商问题

摘要

本文以遗传算法、模拟退火、蚁群算法三个算法解决旅行商问题,将三个算法进行比较分析。目前这三个算法广泛应用于各个领域中,本文以31个城市为例,运用遗传算法、模拟退火、蚁群算法分别进行了计算,将他们的计算结果进行了比较分析。

关键词: 遗传算法 模拟退火 蚁群算法 旅行商问题

背景:

遗传算法:

20世纪60年代初,美国Michigan大学的John Holland教授开始研究自然和人工系统的自适应行为,在从事如何建立能学习的机器的研究过程中,受达尔文进化论的启发,逐渐意识到为获得一个好的算法仅靠单个策略建立和改进是不够的,还要依赖于一个包含许多候选策略的群体的繁殖,从而提出了遗传算法的基本思想。

20世纪60年代中期,基于语言智能和逻辑数学智能的传统人工智能十分兴盛,而基于自然进化思想的模拟进化算法则遭到怀疑与反对,但Holland及其指导的博士仍坚持这一领域的研究。Bagley发表了第一篇有关遗传算法应用的论文,并首先提出“遗传算法”这一术语,在其博士论文中采用双倍体编码,发展

混合粒子群算法:基于模拟退火的算法

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

混合粒子群算法:基于模拟退火的算法

1. 算法原理

模拟退火算法在搜索过程中具有概率突跳的能力,能够有效地避免搜索过程中陷入局部极小解。模拟退火算法在退火过程中不但接受好的解,而且还以一定的概率接受差得解,同时这种概率受到温度参数的控制,其大小随温度的下降而减小。

2. 算法步骤

(1) 随机初始化种群中各微粒的位置和速度;

(2) 评价每个微粒的适应度,将当前各微子的位置和适应值存储在各微子的pi中,将所

有pbest的中适应最优个体的位置和适应值存储在pg中;

(3) 确定初始温度;

(4) 根据下式确定当前温度下各pi的适配值:

eN?(f(pi)?f(pg))/tTF(pi)?

?(f(pi)?f(pg))/t?ei?1(5) 采用轮盘赌策略从所有pi中确定全局最优的某个替代值pg?,然后根据下式更新各

微粒的速度和位置:

vi,j(t?1)???vi,j(t)?c1r1[pi,j?xi,j(t)]?c2r2[pg,j?xi,j(t)]?

xi,j(t?1)?xi,j(t)?vi,j(t?1),j?1,2,...d

??2?C?2C?4C2,C?c1?c2

(6) 计算各微粒新的目标值,更新各微粒的pi值及群体的pg值;

(7) 进行退温

模拟退火算法及其应用研究

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

前言

模拟退火算法及其应用研究

1 前言

非数值算法是基础科学,工程技术和管理科学等领域中常用的一类计算方法,如许多解组合优化问题的算法就是典型的非数值算法,由于这些问题的尤其是其中的NP完全问题本身所固有的计算复杂性,求其精确解的计算量往往随问题规模呈指数型增长,以致使用任何高速计算都需要耗费大量的时间,甚至根本无法实现.因此,研究非数值计算的近似算法及其并行实现的途径具有十分重要的实际意义.

模拟退火算法是近几年提出的一种适合解大规模组合优化问题,特别是解NP完全问题的通用有效近似算法,它与以往的近似算法相比,具有描述简单,使用灵活,运用广泛,运行效率高和较少受初始条件限制等优点,而且特别适合并行计算.因此不仅具有很高的实用价值,而且对推动并行计算的研究也有着重要的理论意义.

组合优化问题的目标函数是从组合优化问题的可行解集中求出最优解.组合优化问题有三个基本要素:变量,约束和目标函数,在求解过程中选定的基本参数称为变量,对变量取值的种种限制称为约束,表示可行方案衡量标准的函数称为目标函数.货郎担问题(TSP)是组合优化问题中最为著名的问题,它易于描述难于

智能计算-模拟退火算法(matlab实现)

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

模拟退火算法

摘要:阐述了模拟退火算法的基本原理及实现过程,运用MATLAB语言实现了该算法。并将其运用到解决旅行商问题的优化之中。数值仿真的结果表明了该方法能够对函数进行全局寻优,有效克服了基于导数的优化算法容易陷入局部最优的问题。该方法既可以增加对MATLAB语言的了解又可以加深对模拟退火过程的认识,并达到以此来设计智能系统的目的。

关键词:模拟退火算法,全局寻优,搜索策略

simulatedannealing algorithm

Abstract:This paper describes the basic principles and processes simulatedannealing algorithm, using MATLAB language implementation of the algorithm. And use it to solve the traveling salesman problem among optimization. Simulation results show that the method can be a function

of

global

optimiza

蚁群算法综述

标签:文库时间:2025-03-13
【bwwdw.com - 博文网】

《智能计算—蚁群算法基本综述》

班级: 研1102班 专业: 计 算 数 学 姓名: 刘 鑫 学号: 1107010036

2012年

蚁群算法基本综述

刘 鑫

(西安理工大学理学院,研1102班,西安市,710054)

摘 要:蚁群算法( ACA)是一种广泛应用于优化领域的仿生进化算法。ACA发展背景着手,分析比较国内外ACA研究团队与发展情况立足于基本原理,分析其数学模型,介绍了六种经典的改进模型,对其优缺点进行分析,简要总结其应用领域并对其今后的发展、应用做 出展望。 关键词: 蚁群;算法;优化;改进;应用 0 引言

专家发现单个蚂蚁只具有一些简单的行为能力。但整个蚁群却能完成一系列复杂的任务。这种现象是通过高度组织协调完成的1991年。意大利学者M.Dorigo首次提出一种新型仿生算法ACA。研究了蚂蚁的行为。提出其基本原理及数学模型。并将之应用于寻求旅行商问题(TSP)的解。

通过实验及相关理论证明,ACA有着有着优化的选择机制的本质。而这种适应和协作机制使之具有良好的发现能力及其它算法所没