crout分解法求解方程组例题
“crout分解法求解方程组例题”相关的资料有哪些?“crout分解法求解方程组例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“crout分解法求解方程组例题”相关范文大全或资料大全,欢迎大家分享。
crout分解法
Crout 方法解线性方程组的程序设计
制作人:李超(小),李超(大),黄黎越,李海燕,黄芳
任务分工:李海燕 ,黄黎越,求出分解矩阵L与U并输出
李超(小),李超(大),x与y的求解输出,算法的设计编写
黄芳:程序中系数矩阵a与方程组y的输入与输出 共同完成流程图和注释语句的编写
Crout 方法解线性方程组的算法
给定线性方程组AX = b ,其中系数矩阵A = (aij) n×n 非奇异,x=(x1 ,x2 ,…, x n)T ,b =( b1,b2,…bn)T , 用 Crout 方法解AX=b的算法如下:
(1) 对A 作LU 分解
由A = LU及矩阵的乘法原理可得: Lij = aij -
?LikUki , j = 1, 2 , …, i, i=1,2,…n;
k?1j?1Uij = ( aij -
?LikUki) / Lii , j = i + 1, i + 2 , …, n,i=1,2,…n;
k?1i?1(2)解两个三角型方程组
由A = LU 及AX
Matlab解方程(方程组)
Matlab 解方程
这里系统的介绍一下关于使用Matlab求解方程的一系列问题,网络上关于Matlab求解方程的文章数不胜数,但是我大体浏览了一下,感觉很多文章都只是零散的介绍了一点,都只给出了一部分Matlab函数例子,以至于刚接触的人面对不同文章中的不同函数一脸茫然,都搞不清楚这些函数各自的用途,也不知道在什么样的情况下该选择哪个函数来求解方程,在使用Matlab解方程时会很纠结。不知道读者是否有这样的感觉,反正我刚开始接触时就是这样的感觉,面对网络搜索到一系列函数都好想知道他们之间是个什么关系。
所谓的方程就是含有未知数的等式,解方程就是找出使得等式成立时的未知数的数值。
求方程的解可以转换成不同形式,比如求函数的零点、多项式的根。方程分类很多,按照未知数个数分为一元、二元、多元方程;按照未知数组合形式分为线性方程和非线性方程;按照非零项次数是否一致分为齐次方程和非齐次方程。线性方程就是方程中未知数次数是一次的,未知数之间不存在指、对、2及以上幂次的关系,线性方程又分为一元线性方程,也就是一元一次方程;多元线性方程,也就是多元一次方程,多以线性方程组的形式出现(包括齐次线性方程组和非齐次线性方程组)。在Matlab中求解方程的函数主要有ro
矩阵分解与线性方程组求解
一、 用列主元素高斯削去法求解下述线性方程组:
?x1?13x2?2x3?34x4?13?2x?6x?7x?10x??22?1234 ??10x?x?5x?9x?141234????3x1?5x2?15x4??36程序:
function x=gaussa(a)
m=size(a); n=m(1); x=zeros(n,1); for k=1:n-1
[c,i]=max(abs(a(k:n,k))); q=i+k-1; if q~=k
d=a(q,:);a(q,:)=a(k,:);a(k,:)=d end
for i=k+1:n
a(i,:)=a(i,:)-a(k,:)*a(i,k)/a(k,k) end end
for j=n:-1:1
x(j)=(a(j,n+1)-a(j,j+1:n)*x(j+1:n))/a(j,j) end
执行过程:
>> a=[1 13 -2 -34 13;2 6 -7 -10 -22;-10 -1 5 9 14; -3 -5 0 15 -36] a =
-10 -1 5 9 14 2 6 -7 -10
线性方程组求解matlab实现
3.1 方程组的逆矩阵解法及其MATLAB程序
3.1.3 线性方程组有解的判定条件及其MATLAB程序 判定线性方程组Am?nX?b是否有解的MATLAB程序
function [RA,RB,n]=jiepb(A,b)
B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,
disp('请注意:因为RA~=RB,所以此方程组无解.') return end
if RA==RB if RA==n
disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') else
disp('请注意:因为RA=RB 例3.1.4 判断下列线性方程组解的情况.如果有唯一解,则用表 3-2方法求解. ?3x1?4x2?5x3?7x4?0,?2x1?3x2?x3?5x4?0,?2x?3x?3x?2x?0,?3x?x?2x?7x?0,1234?1234(1) ? (2) ? ??4x1?11x2?13x3?16x4?0,?4x1?x2?3x3?6x4?0,???7x1?2x2?x3?3x4?0;?x1?2x2?4x3?7x4?0;?4x1?2x2?
线性方程组及其矩阵解法
高等代数课程设计,
**大学理学院
本科考查(课程论文)专用封面
学年学期:2019-2020学年第1学期
课程名称:高等代数
任课教师:**
论文/作业题目:《线性方程组及其矩阵解法》
年级专业:19数学类
姓名学号:************
提交时间:2019.12.15
评阅成绩:
评阅意见:
阅卷教师签名:2020年1月4日
高等代数课程设计,
运用矩阵解线性方程组
摘要
解方程是代数中一个基本的问题,对于多元一次方程组,用矩阵来求解及讨论其的是否有解,是否只有唯一解和多解之间的解的结构问题是一个相对简便和可行的办法。本文主要列出矩阵和多元线性方程组性质和概念,对其定理进行证明和讨论,然后找出定理的推论进行归纳总结。最后提出个人的思考与留下的疑问。
关键词:高等代数;线性方程组;矩阵;性质;证明;思考
Abstract
Solving equations is a basic problem in algebra. For multivariate linear equations, the matrix is used to solve and discuss whether there is a solution, whether there is only one
线性方程组解法的探究
线性方程组解法的探究
摘 要线性方程组源自于生活中一些未知元素的一系列特定的关系而转化成的
一组数据关系。对其进行求解可以解决一些方案的设计问题,例如给以新品的开发的多种原料的成分设计提供多种不同的配方。本文将以多种方法对线性方程组求解,并讲诉线性方程组的类别。
关键词
齐次线性方程组 非齐次线性方程组 克拉默(Cramer)法则
Gauss消去法 广义逆矩阵 减号逆矩阵 增广矩阵 矩阵的初等行变换 矩阵的秩
引言
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。高斯消元法可以用在电脑中来解决数千条等式及未知数。不过,如果有过百万条等式时,这个算法会十分费时。一些极大的方程组通常会用迭代法来解决。亦有一些方法特地用来解决一些有特别排列的系数的方程组。广义逆的思想可追
高等代数 线性方程组习题课(解方程)
讨论线性方程组 x 1 + x 2 + 2 x 3 + 3 x 4 = 1, x 1 + 3 x 2 + 6 x 3 + x 4 = 3, 3 x 1 x 2 p x 3 + 15 x 4 = 3, x 1 5 x 2 10 x 3 + 12 x 4 = t 当 p , t取何值时 , 方程组无解 ? 有唯一解 ? 有无穷多解 ? 在方程组有无穷多解的 情 况下 , 求出一般解 .
解
2 3 1 1 1 6 1 3 1 3 B= 3 1 p 15 3 1 5 10 12 t 2 3 1 1 1 4 2 2 0 2 ~ 0 4 p 6 6 0 0 6 9 t 1 12
1 0 ~ 0 0
1 2 3 1 1 2 1 1 0 p+2 2 4 0 0 3 t + 5
(1)当 p ≠ 2时 , R ( A ) = R ( B ) = 4, 方程组有唯一解 ; ( 2)当p = 2时, 有 1 0 B~ 0 0 1
Gauss完全主元素消去法解方程组完全
计算方法实验报告(三)
班级:地信10801 序号: 姓名:
一、实验题目:Gauss完全主元素消去法解方程组 二、实验学时: 2学时 三、实验目的和要求
1、掌握高斯完全主元素消去法基础原理 2、掌握高斯完全主元素消去法解方程组的步骤 3、能用程序语言对高斯完全主元素消去法进行编程实现
四、实验过程代码及结果
1. 代码
#include void shuchu() { for(int i=1;i<=N;i++) { for(int j=1;j<=N+1;j++) { cout< } cout< } } void initdata() { cout<<\请输入阶数N:\ cin>>N; cout< cout<<\请输入N*(N+1)个数\输入矩阵中的数 1 for(int i=1;i<=N;i++) for(int j=1;j<=N+1;j++) { cin>>a[i][j]; } cout< cout<<\建立的矩阵为:\ //打印出矩阵 shuchu(); } void main() { int z[10]; int maxi,maxj; initdata(); for(int i=1;i<=N;i++) z[i]=i; for(int k=1
牛顿迭代法解方程组(电子科大)
求偏导
?x1/3?y3/2?4)-1?f1(x,y)?arctan(??2?2??f2(x,y)?exp(x?y)?4
?f1(x,y)
=?x?f1(x,y) ?y1?2x331 x3+
3y22 +4 +1
=
31x221 x3+
3y22+4 +1x
?f2(x,y)?x?f2(x,y)==
?2?2exp(x?y)?2
?2?2exp(x?y)?2
?y利用二元泰勒公式得到方程组:
y??f(xk,yk)?(x?xk)fx(xk,yk)?(y?yk)fy(xk,yk)?0 ?g(x,y)?(x?x)g(x,y)?(y?y)g(x,y)?0?kxkkkykk?kk求解这个方程组:
当gx(xk,yk)fy(xk,yk)?fx(xk,yk)gy(xk,yk)?0时
f(xk,yk)gy(xk,yk)?g(xk,yk)fy(xk,yk)??x?xk?gx(xk,yk)fy(xk,yk)?fx(xk,yk)gy(xk,yk)?? ?y?y?g(xk,yk)fx(xk,yk)?f(xk,yk)fx(xk,yk)k?gx(xk,yk)fy(xk,yk)?fx(xk,yk)gy(xk,yk)?将f g的骗到分别代入上式即可
先用matlab画图,观察函
牛顿迭代法解方程组(电子科大)
求偏导
?x1/3?y3/2?4)-1?f1(x,y)?arctan(??2?2??f2(x,y)?exp(x?y)?4
?f1(x,y)
=?x?f1(x,y) ?y1?2x331 x3+
3y22 +4 +1
=
31x221 x3+
3y22+4 +1x
?f2(x,y)?x?f2(x,y)==
?2?2exp(x?y)?2
?2?2exp(x?y)?2
?y利用二元泰勒公式得到方程组:
y??f(xk,yk)?(x?xk)fx(xk,yk)?(y?yk)fy(xk,yk)?0 ?g(x,y)?(x?x)g(x,y)?(y?y)g(x,y)?0?kxkkkykk?kk求解这个方程组:
当gx(xk,yk)fy(xk,yk)?fx(xk,yk)gy(xk,yk)?0时
f(xk,yk)gy(xk,yk)?g(xk,yk)fy(xk,yk)??x?xk?gx(xk,yk)fy(xk,yk)?fx(xk,yk)gy(xk,yk)?? ?y?y?g(xk,yk)fx(xk,yk)?f(xk,yk)fx(xk,yk)k?gx(xk,yk)fy(xk,yk)?fx(xk,yk)gy(xk,yk)?将f g的骗到分别代入上式即可
先用matlab画图,观察函