一元一次不等式解决实际问题教案
“一元一次不等式解决实际问题教案”相关的资料有哪些?“一元一次不等式解决实际问题教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一元一次不等式解决实际问题教案”相关范文大全或资料大全,欢迎大家分享。
实际问题与一元一次不等式(组) - 图文
初中数学教学设计3
教材版本:新人教版第九章 课题 课时安排 实际问题与一元一次不等式(组) 1课时 授课类型 新授课 本节课的主要内容是实际问题与一元一次不等式,它是在学生学习了用方程思想解决实际问题和一元一次不等式相关概念、性质及其解法等知识的基础上进 教材分析 一步学习的内容,既是对已学知识的运用和延续,又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础。学生在本节课中经历把实际问题抽象为不等式的过程,感受数学在现实社会中的应用价值。因此,无论对于实际生活需要,还是对发展学生的应用意识和能力,它都具有极其重要的意义。 七年级学生,已具备了用方程思想解决实际问题的能力,同时对一元一次不等式的相关概念、性质及其解法等知识有所了解。但根据皮亚杰的认知发展理论: 学情分析 这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、内部心理上逐步朝着自我反省的思维发展。虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的抽象概括能力还比较薄弱。对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。 教学目标 知识与技能 1.掌握一元一次不等式(组)的解法; 2.列一元一次不等式(
9.2实际问题与一元一次不等式导学案
9.2 实际问题与一元一次不等式①
学习目标
1.能正确、熟练地解一元一次不等式;
2.会确定不等关系并列一元一次不等式解决简单的实际问题. 课前导引
1.解一元一次不等式与解一元一次方程类似,一般按下列步骤进行: 、 、 、 、 .但是要特别注意不等式两边同乘(或除以)一个负数时,不等号的方向必须 .
2.解一元一次方程,要根据等式的性质,将方程逐步化为 的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为 的形式.
课堂小练 复习巩固 1.下列解不等式
x?22x?1的过程中,出现错误的一步是( ) ?35①去分母:5(x?2)?3(2x?1). ②去括号:5x?10?6x?3. ③移项:5x?6x??3?10; ④系数化为1:x?13.
A.① B.② C.③ D.④
2x?4的值不大于6,则x的取值范围是( ) 3A.x?15 B.x?15 C.x?15 D.x?15
2.若
3.
最新整理--9、2实际问题与一元一次不等式(二)
Teach bear,lio,panda and their plural forms
最新整理--9、2实际问题与一元一次不等式(二)
教学目标:
1.会解一元一次不等式.
2.会用不等式来表示实际问题中的不等关系. 教学重点、难点: 教学过程: 新课:
例 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的起点为购物款达___元后; 乙商店优惠方案的起点为购物款过___元后. 我们是否应分情况考虑?可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗? (2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗? 练习: 1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去A市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若
一元一次不等式教案
一元一次不等式教案
第二章 一元一次不等式与一元一次不等式组
4.一元一次不等式(二)
一、学生知识状况分析
学生的知识技能基础:学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集。
学生活动经验基础:在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础,同时在以前的学习中学生已经有了很多合作的过程,具备了一定的合作交流能力。
二、教学任务分析
本节课的教学任务是用不等式解决简单的实际问题,难度不大,可以采用通过教师出示问题,学生自主学习、互相交流、解决问题的方式处理,从而提高课堂教学效率。根据实际问题中的不等关系列不等式,对部分学生来说还会有一定的困难,可以采用学生尝试解决、师生交流、总结方法、巩固运用等环节予以解决。因此本课时的目标为:
(一)教学目标:
(1)知识与技能目标: ①进一步熟练掌握解一元一次不等式的解法;
②利用一元一次不等式解决简单的实际问题。
(2)过程与方法目标:
通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解对实际问题的解决,训练学
一元一次不等式教案
一元一次不等式教案
第二章 一元一次不等式与一元一次不等式组
4.一元一次不等式(二)
一、学生知识状况分析
学生的知识技能基础:学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集。
学生活动经验基础:在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础,同时在以前的学习中学生已经有了很多合作的过程,具备了一定的合作交流能力。
二、教学任务分析
本节课的教学任务是用不等式解决简单的实际问题,难度不大,可以采用通过教师出示问题,学生自主学习、互相交流、解决问题的方式处理,从而提高课堂教学效率。根据实际问题中的不等关系列不等式,对部分学生来说还会有一定的困难,可以采用学生尝试解决、师生交流、总结方法、巩固运用等环节予以解决。因此本课时的目标为:
(一)教学目标:
(1)知识与技能目标: ①进一步熟练掌握解一元一次不等式的解法;
②利用一元一次不等式解决简单的实际问题。
(2)过程与方法目标:
通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解对实际问题的解决,训练学
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法
知识点回顾
1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集
不等式的解:使不等式成立的未知数的值,叫做不等式的解.
不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.
不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)
(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a?b,那么
a?c__b?c
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果a?b,c?0,那么ac__bc(或
ab___) cc (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a?b,c?0那么ac__bc(或
ab___) cc说明:常见不等式所表示的基本语言与含义还有:
①若a-b>0,则a大于b ;②若a-b<0,则a小于b ;③若a
一元一次不等式培优
一元一次不等式培优
例1、已知不等式3(1-x)<2(x+10) - 2 ① 与不等式
4x?a2(5x?12)< ② 36(1).如果不等式①的解集与不等式②的解集相同。求a的值。
(2)如果不等式①的解集都是不等式②的解,求a的值。
(3)如果不等式②的解集都是不等式①的解,求a的值。
?x?a?0例2、已知关于的不等式组?的整数解共有3个,则的取值范围是.
1?x?0?
例3、5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工
作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.
(1)设租用甲种汽车辆,请你设计所有可能的租车方案;
(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱
的租车方案.
练习 一、判断
1.若ac2>bc2,则a-3>b-3.( )
ab2.若2<2,则a<b( )
cc3.若a>b,则ac>bc( ) 4.若a>b,则ac2>bc2( )
一元一次不等式及不等式组培优
一元一次不等式及不等式组培优 一、一元一次不等式和函数
1.一次函数y=kx+b(k,b是常数,k?0)的图象如图所示,则不等式kx+b>0的解集是 ;
不等式kx+b<2的解集是 ; 当x<0时,y的取值范围是 ;
当x>-2时,y的取值范围是 .
2.直线l1:y?k1x?b与直线l2:y?k2x在同一平面直角坐标系中的图象如图所示,则关
y 于x的不等式k2x?k1x?b的解集为 .
3.一次函数y=5x-2m与与y=3x-6m+1交于第四象限,m的范围___________.
3 -1.5 o x
4.已知2x+y=5,当x满足条件 时,﹣1≤y<3.
5.如图,直线y=kx+b过A(﹣1,2),B(﹣2,0)两点,则0≤kx+b<4的解集为 .
6.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是 .
二、二元一次方程组和不等式 1.已知方程组
的解为负整数,求整数a的值.
2.已知方程组值.
3.已知方程组
(1)求m的取值范围; (2)化简:|
一元一次不等式复习
不等式复习
知识要点
(一) 一元一次不等式(组)的有关概念
1.不等式:用 表示不等关系的式子,叫做不等式。
2.不等式的解:能使不等式成立的 的值,叫做不等式的解. 3.不等式的解集:对于一个含有未知数的不等式,它的 , 叫做这个不等式的解集.
4.一元一次不等式:只含有 个未知数,并且未知数的最高次数是 的不等式,叫做一元一次不等式.
5.不等式组:几个含有相同未知数的 合起来,构成一个不等式组。
6.不等式组的解集:不等式组中各个不等式的解集的 ,叫做不等式组的解集. (二) 不等式的基本性质
性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号 的方向不变。
即:如果a>b,那么a±c>b±c.
性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变。
ab即:如果a>b,c>0,那么ac>bc(或 c?c). 性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变。
ab即:如果a>b,c<0,那么ac ). 1.解一元一次不等式与解一元一次方程的步骤基本相同: 去分母,去 , ,合并
7.5 用一元一次不等式解决问题导学案
7.5 用一元一次不等式解决问题
学习目标:
1、会用一元一次不等式描述现实生活中的数量之间的不等关系,并解决一些的实际问题; 2、初步体会一元一次不等式的应用价值,发展学生的分析问题和解决问题的能力. 学习重点:
重点:列元一次不等式的解应用题关键是对各数量间关系的理解和分析; 难点:抓住关键字眼,挖掘隐含的数量关系. 一、预习练习:
1、根据题意列不等式.
(1)小明今年x岁,他的年龄不小于12岁. (2)一个n边形的内角和超过外角和. (3)一个三角形三边为2、3、x.
(4)王大爷早晨以xkm/时的速度到10km远的公园晨练,早晨六点出发,要在7点前赶到。 二、创设情境:
例1 一只纸箱质量为1kg,当放入一些苹果(每个苹果的质量为0.3kg)后,箱子和苹果的总质量不超过10kg.这只纸箱内最多能装多少个苹果?
解:设这只纸箱内最多能装x个苹果。 根据题意,得
答:这只纸箱内最多能装 个苹果
巩固练习:课本P.20练习1 三、合作交流
(1)列一元一次不等式,解决实际问题步骤与求列一元一次方程解决实际问题,作一下比较,看看它们有哪些类似之处?有什么不同?(可安排学生进行讨