勾股定理(2)教案

“勾股定理(2)教案”相关的资料有哪些?“勾股定理(2)教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“勾股定理(2)教案”相关范文大全或资料大全,欢迎大家分享。

勾股定理(2)doc

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

勾股定理(2)

班级 姓名 学号

学习目标:

1、通过拼图,用面积的方法说明勾股定理的正确性. 2、通过实例应用勾股定理,培养学生的知识应用技能.

重 难点:1. 用面积的方法说明勾股定理的正确.2. 勾股定理的应用. 学习过程:

一、学前准备:1、阅读课本第46页到第47页,完成下列问题:

(1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦。图(1)称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的。图(2)是在北京召开的2002年国际数学家大会(TCM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就. 你能用不同方法表示大正方形的面积吗?

2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的图形。大正方形的面积可以表示为_______,又可以表示为____________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)。

归纳其共有的证明思路:利用图形的割补,借助前后的面积相等形成关于三边的数量关系。

aa

《勾股定理》教案 湘教版

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

1.2直角三角形的性质和判定(Ⅱ) 第1课时勾股定理

1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)

2.掌握勾股定理,并应用它解决简单的计算题;(重点)

3.了解利用拼图验证勾股定理的方法.(难点)

一、情境导入

如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?

二、合作探究

探究点一:勾股定理

【类型一】直接运用勾股定理

已知:如图,在△ABC中,∠ACB =90°,AB=13cm,BC=5cm,CD⊥AB 于D,求:

(1)AC的长;

(2)S△ABC;

(3)CD的长.

解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据CD·AB=BC·AC即可求出CD.

解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12(cm);

(2)∵S△ABC=

1

2CB·AC=

1

2×5×12=30(cm2);

(3)∵S△ABC=

1

2AC·BC=

1

2CD·

勾股定理逆定理2导学案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

黄州西湖中学 课题:勾股定理的逆定理(2)学习目标: 勾股定理逆定理的实际应用 学习重点: 勾股定理逆定理的应用 学习难点: 勾股定理逆定理的计算 学习过程: 一、课前预习 1、忆一忆 ⑴我们已经学习了勾股定理及其逆定理,你能叙述 吗? 命题一:_____________________________________ 命题二:_____________________________________ ⑵你能用勾股定理及其逆定理解决那些问题?

数学 学科导学案活页 授课教师:祝向奎三、合作探究:

年级

班级

学生

时间

学科组长:

教研组长:

5.某市在旧城改造中,计划在市内一块如图所示的三角 形空地上种植草皮以美化环境,已知这种草皮每平方米 问题 2:有一块菜地形状如下,试求它的面积。 售价 a 元,则购买这种 温馨提示: 草皮至少需要( ). ①结合题目的数据的图形特征你能想到哪些结论? A、450a B、225a 元 ②不规则图形的面积可以转化成规则图形的面积的和或 C、150a 元 D、300a 元 B 6. 已知在△ ABC 中, 差本题应如何转化?

12 C 3┗ 4 D四、分层训练 1、三角形的三边长 a,b,c 满足(a+b) 2 =c 2

勾股定理逆定理2导学案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

黄州西湖中学 课题:勾股定理的逆定理(2)学习目标: 勾股定理逆定理的实际应用 学习重点: 勾股定理逆定理的应用 学习难点: 勾股定理逆定理的计算 学习过程: 一、课前预习 1、忆一忆 ⑴我们已经学习了勾股定理及其逆定理,你能叙述 吗? 命题一:_____________________________________ 命题二:_____________________________________ ⑵你能用勾股定理及其逆定理解决那些问题?

数学 学科导学案活页 授课教师:祝向奎三、合作探究:

年级

班级

学生

时间

学科组长:

教研组长:

5.某市在旧城改造中,计划在市内一块如图所示的三角 形空地上种植草皮以美化环境,已知这种草皮每平方米 问题 2:有一块菜地形状如下,试求它的面积。 售价 a 元,则购买这种 温馨提示: 草皮至少需要( ). ①结合题目的数据的图形特征你能想到哪些结论? A、450a B、225a 元 ②不规则图形的面积可以转化成规则图形的面积的和或 C、150a 元 D、300a 元 B 6. 已知在△ ABC 中, 差本题应如何转化?

12 C 3┗ 4 D四、分层训练 1、三角形的三边长 a,b,c 满足(a+b) 2 =c 2

《勾股定理》说课教案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

《勾股定理》说课稿

麻城市黄土岗中心学校 曾 超 尊敬的各位评委老师,大家好!我来自麻城市黄土岗中心学校,今天我说课的内容是《勾股定理》。下面我将从教材分析、教学目标、教法学法、教学过程、设计说明和课后反思六个方面进行说课。 一 教材分析: (一)教材分析:

“勾股定理”是新人教版《数学》八年级下册第十七章第一节内容,分两课时完成。本讲为第一课时,主要讲解勾股定理的探索与验证。

勾股定理是几何中几个重要的定理之一,它揭示了直角三角形三边之间关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它将数与形密联系起来,在数学的发展中起着重要的作用,在现实生活中有着广泛的应用。 (二)学情分析

(1)学生的认知基础:八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法 . 但是学生对用面积方法证明几何命题还存在障碍,对于如何将图形与数有机的结合起来还很陌生.

(2)学生年龄心理特点:八年级的学生在心理与生理方面已经日趋成熟,对待事物的看法有一定的个性见解,表现欲强,思维敏捷

二 教学目标 (一)四维教学目标

新课标中指出,在数学学习过程中学生应该获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活

1.1探索勾股定理教案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

1.1探索勾股定理

教材

义务教育课程标准实验教科书(北师大版)八年级数学上册第一章第1节P2~ P6。

勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。教学目标

1、知识与技能目标:掌握直角三角形三边之间的数量关系,学会用符号表示。学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。

2、能力目标:通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决实际问题中掌握勾股定理的应用技能。

3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。使学生从经历定理探索的过程中,感受数学之美,探究之趣。 教学重点、难点

重点:用面积法探索勾股定理,理解并掌握勾股定理。

[来源:Zxxk.Com][来源:学*科*网Z*X*X*K]

难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。 教学方法

2.6探索勾股定理2(hu)

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

勾股定理的证明: 勾股定理的证明:

c

ab

1 (a + b) = c + 4 × ab 22 2

S梯形

1 1 2 1 = (a + b)(a + b) c + 2 × ab = 2 2 2

伽菲尔德——美 伽菲尔德——美国 —— 第 20 任总统

应用3 应用3 x x 6 10 8-x 4 x 8-x 5 8-x 5

将直角边BC沿直线 将直角边BC沿直线BD 沿直线BD ED折叠 使它A,B重 折叠, 沿ED折叠,使它A,B重 折叠,使它落在斜边AB上 折叠,使它落在斜边AB上,合,求CD的长。 CD的长 的长。 且与BE重合 CD的长 重合, 的长。 且与BE重合,求CD的长。 应用4 应用4:将直角三角形的直角边都扩大到原来 则斜边扩大到原来的几倍? 的5倍,则斜边扩大到原来的几倍?

勾股定理: 勾股定理: 直角三角形两直角边的平方和等于斜边的平方 两直角边的平方和等于斜边的平方。 直角三角形两直角边的平方和等于斜边的平方。

勾股定理( 2.6 勾股定理(2)勾股定理逆定理: 勾股定理逆定理: 两边的平方和等于第三边的平方, 如果三角形中两边的平方和等于第三边的平方 如果三角形中两边的平方和等于第三边的平方, 那么这个三角形是

16.3勾股定理的应用教案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

任课教师 课 题

辛娅

学科

数学

年级 16.3

八年级 勾股定理的应用

时间

2011.1.4

1、知识与能力: 通过对一些典型题目的思考、解答,能正确、熟练的进行勾股定 理的有关计算,加深对勾股定理的理解应用。 教学目标 2、过程与方法: 会用勾股定理解决一些简单的实际问题,逐步渗透“数形结合”, “转化”“方程”的数学思想,体会数学的应用价值和渗透数学 思想给解题带来的便利。 3、情感、态度与价值观: 感受数学在生活中的应用,感受数学定理的美。 教学重点 教学难点 教学方法 课 型 新 授 课 把实际问题转化成数学问题,利用勾股定理来解决. 分析思路,渗透数学思想 情境教学法,师生互动法 教具 多 媒 体

本课我采用了引导学生分析,归纳总结的教学方法。以学生为主体,充分激发学 教学思路 生的主动意识和探索精神,调动学生学习的积极性,拓展他们的思维空间,发挥 学生丰富的想象力.

环节

教 师 活 动 情景引入: 如图,在学校有一块长方形草 坪,有极少数人为了避开拐角 走“捷径”,在草坪内走出了

学 生 活 动

备 注 教师出示

学生上台讲解

幻灯片一

创设 问题 情境

从现实生活中 解: ∵在 Rt△ABC 中, ∠B=90°, AB=3m, BC=4m ∴

勾股定理

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

北师大版八年级上册数学 第一章 探究勾股定理专项练习

探索勾股定理(01) 1.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE

⊥BC

垂足分

别是D

、E.则图中全等的三角形共有( )

2.如图,在边长为4的等边三角形ABC中,AD是BC

边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( )

4.如图,点A是5×5网格图形中的一个格点(小正方形的顶点),图中每个小

正方形的边长为1,以A为其中的一个顶点,面积等于5/2的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( )

5.如图,在把易拉罐中

的水

倒入

个圆

水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为( )

6.如图,将圆桶中的水倒入一个直径为40cm

,高为55cm的圆口容器中,圆桶放置的角度与水平线的夹角为45度.若使容器中的水面与圆桶相接触,则容器中水的深度至少应为

( )

7.如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )

8

.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则

AC

002号1.1(2)探索勾股定理

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

八年级上 数学 第一章 勾股定理 编号002

课题 1.1(2)探索勾股定理 课型 周次 主备人 张娟 审核人 王贤成 课时 1 上课时间 授课老师 新授课 第1周 学习小组 组内编号 姓名 组内评价 教师评价 【课标要求】运用勾股定理解决简单实际问题

【学习目标】1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.

2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.

3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识. 【重点】用面积法验证勾股定理,应用勾股定理解决简单的实际问题 【难点】勾股定理的验证

【学习方法】主动探究,小组合作 【教学过程】 (一)课前预习

仔细阅读课本的P5 图1—5图1—6并回答:

1、 将所有三角形和正方形的面积用a.b.c的关系式表示出来;