导数与函数的极值、最值
“导数与函数的极值、最值”相关的资料有哪些?“导数与函数的极值、最值”相关的范文有哪些?怎么写?下面是小编为您精心整理的“导数与函数的极值、最值”相关范文大全或资料大全,欢迎大家分享。
导数与函数的极值、最值
高三数学第一轮总复习 第三章第三节
知识要点
双基巩固
典型例题
易错辨析
提升训练
第三节
导数与函数的极值、最值
高三数学第一轮总复习 第三章第三节
知识要点
双基巩固
典型例题
易错辨析
提升训练
一、函数的极值1.定义:设函数f(x)在点x0附近有定义,如果对x0附近所有的点,
都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近所有的点,都有f(x)>f(x0),就说f(x0)是函数 2.求函数y=f(x)在某个区间上的极值的步骤:(1)求导数f′(x); (2)求方程f′(x)=0的根x0;(3)检查f′(x)在方程f′(x)=0的根x0的左右
f(x)的一个极小值,记作y极小值=f(x0).极大值和极小值统称为极值.
的符号;“左正右负” f(x)在x0处取极大值;“左负右正” f(x)在x0处取极小值(注:导数为零的点未必是极值点).
高三数学第一轮总复习 第三章第三节
知识要点
双基巩固
典型例题
易错辨析
提升训练
3.特别提醒:(1)x0是极值点的充要条件是x0点两侧导数异号,
而不仅是f′(x0)=0,f′(x0)=0是x0为极值点的必要而不充分条件.(2)给出函数极大(小)值的条件,一定要既考虑f′
导数与函数的单调性、极值和最值
导数与函数极值和最值
1.函数的单调性与导数
2.函数的极值 (1)函数的极值的概念:
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小, f′(a)=0;而且在点x=a附近的左侧 f′(x)<0 f′(x)>0 ___________,右侧__________,则点a 极小值点 叫做函数y=f(x)的_________,f(a)叫做 极小值 函数y=f(x)的________.
函数y=f(x)在点x=b的函数值f(b)比它 在点x=b附近其他点的函数值都大,
f′(b)=0;而且在点x=b附近的左侧 f′(x)>0 f′(x)<0 _________,右侧_________,则点b叫极大值点 做函数y=f(x)的__________,f(b)叫做 函数y=f(x)的________.极小值点、极 极大值 极值点 大值点统称为________,极大值和极小 极值 值统称为_______.
(2)求函数极值的步骤: ①求导数f′(x); ②求方程f′(x)=0的根; ③检查方程根左右两侧值的符号,如果
左正右负,那么f(x)在这个根处取极大值 _______,如果左负右正,那么f(x)在这
个根处取___
多元函数的极值与最值的求法
多元函数的极值与最值的求法
摘要
在实际问题中, 往往会遇到多元函数的最大值、最小值问题.多元函数的最大值、最小值问题与极大值、极小值有密切联系.
求多元函数极值, 一般可以利用偏导数来解决.与一元函数相类似, 可以利用函数的极值来求函数的最大值和最小值,但是由于自变量个数的增加, 从而使该问题更具复杂性. 这里主要讨论二元函数, 对于二元以上的函数极值可以类似加以解决. 求多元函数的极值,本文主要采用以下方法:(1)利用二元函数的偏导数求二元函数极值;(2)拉格朗日乘数法求极值;(3)用几何模型法求解极值;(4)通过Jacobi 矩阵求条件极值;(5)利用参数方程求极值;(6)利用方向导数判别多元函数的极值;(7)用梯度法求极值.
对多元函数的最值问题,我们主要采用的方法有:(1)消元法;(2)均值不等式法;(3)换元法;(4)数形结合法;(5)柯西不等式法;(6)向量法.除此之外,很重要的一种就是:考虑极值与最值的关系,运用极值法求最值.
关键词:多元函数,极值,最值,方法
、
Methods for Calculating Extremum and the most Value of Multivariable
Fun
导数在函数单调性极值最值中的应用 - 图文
高三数学第一轮复习 学案 8月 日
第十一讲 导数在函数的单调性、极值、最值中的应用 姓名_________
一、知识梳理: 1.单调性与导数
1)① 若f?(x)?0在?a,b?上恒成立,?f(x)在 函数; 若f?(x)?0在?a,b?上恒成立,?f(x)在 函数。 ② f(x)在区间?a,b?上是增函数?f?(x) 0在
?a,b?上恒成立;
f(x)在区间?a,b?上为减函数?f?(x) 0在?a,b?上恒成立。
2)求函数f(x)的单调区间的步骤:
① ;② ;③ .④ . 2.极值与导数
1) 设函数f(x)在点x0附近有定义,如果左 右 ,则f(x0)是函数f(x)的一个极大值; 2)如果左 右 ,则f(x0)是函数f(x)的一个极小值; 3)如果左右不改变符号,那么f(x)在这个根处 。
注意: ①极值是一个局部概念,不同与最值; ②函数的极值不是唯一的; ③极大值与极小值
多元函数的极值与最值的求法
大学数学专业毕业论文,系统介绍多元函数的极值与最值的多种求法!
多元函数的极值与最值的求法
摘要
在实际问题中, 往往会遇到多元函数的最大值、最小值问题.多元函数的最大值、最小值问题与极大值、极小值有密切联系.
求多元函数极值, 一般可以利用偏导数来解决.与一元函数相类似, 可以利用函数的极值来求函数的最大值和最小值,但是由于自变量个数的增加, 从而使该问题更具复杂性. 这里主要讨论二元函数, 对于二元以上的函数极值可以类似加以解决. 求多元函数的极值,本文主要采用以下方法:(1)利用二元函数的偏导数求二元函数极值;(2)拉格朗日乘数法求极值;(3)用几何模型法求解极值;(4)通过Jacobi 矩阵求条件极值;(5)利用参数方程求极值;(6)利用方向导数判别多元函数的极值;(7)用梯度法求极值.
对多元函数的最值问题,我们主要采用的方法有:(1)消元法;(2)均值不等式法;(3)换元法;(4)数形结合法;(5)柯西不等式法;(6)向量法.除此之外,很重要的一种就是:考虑极值与最值的关系,运用极值法求最值.
关键词:多元函数,极值,最值,方法
、
大学数学专业毕业论文,系统介绍多元函数的极值与最值的多种求法!
Methods for Calculatin
函数的极值与最值练习题
函数的极值与最值练习题
一、选择题
1.下列说法正确的是
A.当f′(x0)=0时,则f(x0)为f(x)的极大值
B.当f′(x0)=0时,则f(x0)为f(x)的极小值
C.当f′(x0)=0时,则f(x0)为f(x)的极值
D.当f(x0)为函数f(x)的极值且f′(x0)存在时,则有f′(x0)=0
2.下列四个函数,在x=0处取得极值的函数是
①y=x3 ②y=x2+1 ③y=|x| ④y=2x
A.①② B.②③ C.③④ D.①③
3.函数y=6x的极大值为 21 x
A.3 B.4 C.2 D.5
4.函数y=x3-3x的极大值为m,极小值为n,则m+n为
A.0 B.1 C.2 D.4
5.y=ln2x+2lnx+2的极小值为
- A.e1 B.0 C.-1 D.1
6.y=2x3-3x2+a的极大值为6,那么a等于
A.6 B.0 C.5 D.1
二、填空题
7.函数f(x)=x3-3x2+7的极大值为___________.
8.曲线y=3x5-5x3共有___________个极值.
9.若函数y=x3+ax2+bx+27在x=-1时有
函数的极值和最值(讲解)
函数的极值和最值
考纲要求】
1.掌握函数极值的定义。
2.了解函数的极值点的必要条件和充分条件.
3.会用导数求不超过三次的多项式函数的极大值和极小值
4.会求给定闭区间上函数的最值。
知识网络】
【考点梳理】
要点一、函数的极值
函数的极值的定义
一般地,设函数f (x) 在点x= x0及其附近有定义,
(1)若对于x0附近的所有点,都有f(x )f(x0),则f(x0)是函数f (x)的一个极大值,记作y极大值= f (x0) ;
(2 )若对x0附近的所有点,都有f (x ) f(x0),则f(x0)是函数f(x) 的一个极小值,记作y极小值= f (x0).
极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.
要点诠释:
求函数极值的的基本步骤:
①确定函数的定义域;
②求导数f (x) ;
③求方程f (x)=0的根;
④检查f'(x)在方程根左右的值的符号,如果左正右负,则 f(x)在这个根处取得极大值;如果左负右正,则 f(x)在这个根处取得极小值.(最好通过列表法)
要点二、函数的最值
1.函数的最大值与最小值定理
若函数y= f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上必有最大值和最小值;在开区间(a,b
3.3.2函数的极值与导数
3.3.2函数的极值与导数
班别:____ 组别:____ 姓名:____ 评价:____
【学习目标】
1.了解函数在某点取得极值的必要条件和充分条件.
2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).
☆预习案☆ (约 分钟)
依据课前预习案通读教材,进行知识梳理,完成预习自测题目,并将预习中不能解决的问题填写到后面“我的疑惑”处。
【知识要点】 (阅读课文93—96页,完成导学案) 1.极值点与极值 (1)极小值与极小值点
如图,若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0 , 而且在点x=a附近的左侧 ,右侧 ,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)极大值与极大值点
如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大 , f′(b)=0 ,而且在点x= b附近的左侧 ,右侧 ,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值。极小值点、极大值点统称为 ,极大值和极小值统称为
3.3.2函数的极值与导数
3.3.2函数的极值与导数
班别:____ 组别:____ 姓名:____ 评价:____
【学习目标】
1.了解函数在某点取得极值的必要条件和充分条件.
2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).
☆预习案☆ (约 分钟)
依据课前预习案通读教材,进行知识梳理,完成预习自测题目,并将预习中不能解决的问题填写到后面“我的疑惑”处。
【知识要点】 (阅读课文93—96页,完成导学案) 1.极值点与极值 (1)极小值与极小值点
如图,若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0 , 而且在点x=a附近的左侧 ,右侧 ,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)极大值与极大值点
如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大 , f′(b)=0 ,而且在点x= b附近的左侧 ,右侧 ,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值。极小值点、极大值点统称为 ,极大值和极小值统称为
导数在求极值和最值中的应用
高二数学校本练习
导数在求极值和最值中的应用
时间:2.7 份数:520 姓名 1.设函数f(x)?(x3?1)2,下列结论中正确的是( ) A.x?1是函数f(x)的极小值点,x?0是极大值点 B.x?1及x?0均是f(x)的极大值点
C.x?1是函数f(x)的极小值点,函数f(x)无极大值 D.函数f(x)无极值
2. 函数y?x3?3x2?9x??2?x?2?有( )
A.极大值5,极小值-27 B.极大值5,极小值-11 C.极大值5,无极小值 D.极小值-27,无极大值 3.函数y=x4-4x+3在区间[-2,3 ]上的最小值为 ( ) A. 72 B. 36 C.12
D.0
4.右图是函数y?f(x)的导函数y?f?(x)的图象,给出下列命题:
①—3是函数y?f(x)的极值点; ②—1是函数y?f(x)的最小值点; ③y?f(x)在x?0处切线的斜率小于零;