高中数学圆锥曲线解题技巧

“高中数学圆锥曲线解题技巧”相关的资料有哪些?“高中数学圆锥曲线解题技巧”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学圆锥曲线解题技巧”相关范文大全或资料大全,欢迎大家分享。

圆锥曲线解题技巧经典实用

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

v1.0 可编辑可修改

1 1 圆锥曲线―概念、方法、题型、及应试技巧总结

1.圆锥曲线的两个定义:

(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .

421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C )

; (2

方程8=表示的曲线是_____(答:双曲线的左

支)

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心

高中数学圆锥曲线小结论

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

椭 圆

1. 点P处的切线PT平分△PF1F2在点P处的外角.

2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ为直径的圆必与对应准线相离.

4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.

xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.

ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.

ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面

ab?积为S?F1PF2?b2tan.

2x2y2椭圆2?2?1(a>b>0)的焦半径公式:

ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).

8.

9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F

的椭圆准线于M、N两点,则MF⊥NF.

高中数学函数解题技巧

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

专题1 函数 (理科)

一、考点回顾

1.理解函数的概念,了解映射的概念.

2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.

3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析

考点一:函数的性质与图象

函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.

复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:

1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.

2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.

3.培养学生用运动变

高中数学圆锥曲线小结论

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

椭 圆

1. 点P处的切线PT平分△PF1F2在点P处的外角.

2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ为直径的圆必与对应准线相离.

4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.

xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.

ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.

ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面

ab?积为S?F1PF2?b2tan.

2x2y2椭圆2?2?1(a>b>0)的焦半径公式:

ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).

8.

9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F

的椭圆准线于M、N两点,则MF⊥NF.

圆锥曲线解题技巧和方法综合(全)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

圆锥曲线的解题技巧

一、常规七大题型:

(1)中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),

(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意

斜率不存在的请款讨论),消去四个参数。

x2y2如:(1)2?2?1(a?b?0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有

abx0y0?2k?0。 2abx2y2 (2)2?2?1(a?0,b?0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有

abx0y0?2k?0 2ab(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

y2 典型例题 给定双曲线x?过A(2,1)的直线与双曲线交于两点P1 及P2,?1。

22求线段P1P2的中点P的轨迹方程。

(2)焦点三角形问题

椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。

x2y2 典型例题 设P(x,y)为椭圆2?2?1上任一点,F1(?c,0),F2(c,0)为焦点,

ab?PF1F2??,?PF2F1

圆锥曲线解题技巧和方法综合(经典)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

圆锥曲线解题方法技巧归纳

第一、知识储备: 1. 直线方程的形式

(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容 ①倾斜角与斜率k?tan?,??[0,?) ②点到直线的距离d?tan??k2?k11?k2k1Ax0?By0?CA?B22 ③夹角公式:

(3)弦长公式

直线y?kx?b上两点A(x1,y1),B(x2,y2)间的距离:AB?1?k2x1?x2

?(1?k2)[(x1?x2)2?4x1x2] 或AB?1?1y1?y2 2k(4)两条直线的位置关系

①l1?l2?k1k2=-1 ② l1//l2?k1?k2且b1?b2 2、圆锥曲线方程及性质

(1)、椭圆的方程的形式有几种?(三种形式)

x2y2 标准方程:??1(m?0,n?0且m?n)

mn 距离式方程:(x?c)2?y2?(x?c)2?y2?2a 参数方程:x?acos?,y?bsin? (2)、双曲线的方程的形式有两种

x2y2 标准方程:??1(m?n?0)

mn 距离式方程:|(x?c)2?y2?(x?c)2?y2|?2a (3)、三种圆锥曲线的通径你记得吗?

2b22b22p

圆锥曲线解题技巧和方法综合(全)

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

圆锥曲线的解题技巧

一、常规七大题型:

(1)中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),

(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意

斜率不存在的请款讨论),消去四个参数。

x2y2如:(1)2?2?1(a?b?0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有

abx0y0?2k?0。 2abx2y2 (2)2?2?1(a?0,b?0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有

abx0y0?2k?0 2ab(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

y2 典型例题 给定双曲线x?过A(2,1)的直线与双曲线交于两点P1 及P2,?1。

22求线段P1P2的中点P的轨迹方程。

(2)焦点三角形问题

椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。

x2y2 典型例题 设P(x,y)为椭圆2?2?1上任一点,F1(?c,0),F2(c,0)为焦点,

ab?PF1F2??,?PF2F1

高中数学_圆锥曲线知识点小结

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

《圆锥曲线》知识点小结

一、椭圆:(1)椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于|其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意:2a |F1F2|表示椭圆;2a |F1F2|表示线段F1F2;2a |F1F2|没有轨迹; (2

F1F2|)的点的轨迹。

22xy3.常用结论:(1)椭圆 1(a b 0)的两个焦点为F1,F2,过F1的直线交椭圆于A,B两a2b2

点,则 ABF2的周长= (2)设椭圆

x2y2

2 1(a b 0)左、右两个焦点为F1,F2,过F1且垂直于对称轴的直线2ab

交椭圆于P,Q两点,则P,Q的坐标分别是 |

PQ|

二、双曲线:

(1)双曲线的定义:平面内与两个定点F1,F2|迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。 注意:|

F1F2|PF1| |PF2| 2a与|PF2| |PF1| 2a(2a |F1F2|)表示双曲线的一支。

2a |F1F2|表示两条射线;2a |F1F2|没有轨迹;

(2)双曲线的标准方程、图象及几何性质:

标准方程

中心在原点,焦点在x轴上

中心在原点,焦点在

y轴上

x2y2

1(a 0,b 0) a2b2

y2

2013高中数学圆锥曲线问题常用方法

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

解圆锥曲线问题常用以下方法: 1、定义法

(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。

(2)双曲线有两种定义。第一定义中,r1 r2 2a,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是

90题突破高中数学圆锥曲线1

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

90题突破高中数学圆锥曲线

x2y21.如图,已知直线L:x?my?1过椭圆C:2?2?1(a?b?0)的右焦点F,且交椭圆

abC于A、B两点,点A、B在直线G:x?a2上的射影依次为点D、E。 (1)若抛物线x2?43y的焦点为椭圆C的上顶点,求椭圆C的方程;

(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定

点N,请求出N点的坐标,并给予证明;否则说明理由。

????????a2?1,0)为x轴上一点,求证:AN??NE (文)若N(2

2.如图所示,已知圆C:(x?1)2?y2?8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足AM?2AP,NP?AM?0,点N的轨迹为曲线E。

(1)求曲线E的方程;

(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足FG??FH,求?的取值范围。

x2y23.设椭圆C:2?2?1(a?b?0)的左焦点为F,上顶点为A,过点A作垂直于AF的直

aby 8线交椭圆C于另外一点P,交x轴正半轴于点Q, 且 AP?PQ 5⑴求椭圆C的离心率;

⑵若过A、Q、F三点的圆恰好与直线

F A P O Q x l: x?