微积分的解题方法

“微积分的解题方法”相关的资料有哪些?“微积分的解题方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微积分的解题方法”相关范文大全或资料大全,欢迎大家分享。

微积分-常微分方程解题方法

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

北京理工大学

微积分-常微分方程解法

常微分方程各种解题方法

程功 2011/2/16

1.几个基本定义

(1)微分方程:凡含有未知函数的导数或微分的方程叫微分方程.

实质: 联系自变量,未知函数以及未知函数的某些导数(或微分)之间的关系式.

分类1: 常微分方程: 未知函数为一元函数 偏微分方程: 未知函数为多元函数

分类2:

微分方程的阶: 微分方程中出现的未知函数的最高阶导数的阶数称之. 一阶微分方程F(x,y,y?)?0,y??f(x,y);

高阶?n?微分方程F(x,y,y?,?,y(n))?0,y(n)?f(x,y,y?,?,y(n?1)).

分类3: 线性与非线性微分方程.y??P(x)y?Q(x),x(y?)2?2yy??x?0;

?dy?3y?2z,??dx分类4: 单个微分方程与微分方程组.?

?dz?2y?z,??dx(2)微分方程的解:代入微分方程能使方程成为恒等式的函数称之.

微分方程的解的分类:

① 通解: 微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同.

例y??y,通解y?Cex;

y???y?0,通解y?C1sinx?C2cosx;

② 特解: 确定了通解中任意常数以后的解. (

微积分的思想和方法

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

微积分的思想和方法

(部分讲义)

黄 荣 第四讲

第四章 定积分与不定积分

[教学目标]

1、了解定积分产生的历史、实际背景,理解定积分的概念,掌握定积分的性质;

2、理解原函数与不定积分的概念; 3、掌握不定积分性质与其本积分公式; 4、掌握定积分的牛顿一莱布尼兹公式; 5、了解定积分在实际问题中的应用; 6、了解简单微分方程的概念。 [重点难点]

定积分、不定积分的概念、牛顿一莱布尼兹公式。 [学习建议]

1、学习定积分概念时,应充分注意体现微积分的基本思想。 2、学员学习不定积分时,要注意加强练习,尽量做到掌握不定积分的计算方法。

3、牛顿一莱布尼兹公式,建立了微分和积分之间的联系,学员应适当练习,切实掌握。

4、为了掌握计算技能,学员必须做适当的练习。 [课时分配]

面授8课时,自学16 课时。 [面授辅导] 1、不定积分 1.1.1原函数

▲如果函数f(x)与f(x)定义在同一区间(a,b),并且处处都有:F1(x)=f(x) 或df(x)=f(x)dx

则称f(x)是f(x)的一个原函数。 下列是一些简单函数的原函数: 出数 cosx sinx ex en

ex xn+1 原函数 si

微积分与数学思想方法

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学思想方法的解释有多种多样,其中胡炯涛《数学教学论》广西教育出版社,一书中指出数学思想方法则是数学知识发生过程中的提炼、抽象、概括和升华,是对数学规律更一般的认识,它蕴藏在数学知识之中,需要学习者去挖掘[6]。数学思想方法分为两部分,一是数学思想,二是数学方法,其中数学思想是指我们对教材中理论知识及内容最本质的认识,而数学方法是数学思想的具体化形式,运用到实际的题目中[20]。下面就具体来阐述一下微积分习题中的数学思想方法: 5.1函数思想

函数思想是我们在中学阶段中常见的一种思想方法,是指用函数的概念、性质、特点去分析问题、转化问题和解决问题的一种思维,函数思想是一个基本的数学思想,方程,不等式问题可以在函数的观点下统一起来,数列是特殊的函数,集合论的知识作为建立函数的基础,也包括在其中[11]。在新版教材微积分的内容中,函数思想更为重要,其中一部分题目就是借助“微积分”这个工具,最后还是依据函数的基本性质去解决问题。例如:

一条长为l的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?[12](新版教材人教A版选修2–2课本37页习题)

解:设其中一段铁丝的长度为x,则另一段为l?x,面积为s

微积分

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

1.高等数学概念

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 定义

设函数f(x)=0在[a,b]上有解,在[a,b]中任意插入若干个分点 a=x0

把区间[a,b]分成n个小区间

[x0,x1],...[xn-1,xn]。

在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和

如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,

这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作

定积分 即:

展开式 编辑本段微积分学的建立

从微积分成为一门

微积分

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

篇一:微积分入门

校 本 课 程

论文题目:微积分初步

作 者:高红桃

日 期:2011-09-11

中国战国时代(公元前7世纪),我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”,即老庄哲学中所有的无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。这是朴素的、也是很典型的极限概念。而极限理论便是微分学的基础。

古希腊时期(公元前3世纪),阿基米德用内接正多边形的周长来穷尽圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来填充抛物线的图形,以求得其面积。这是穷尽法的古典例子之一,可以说是积分思想的起源。

17世纪,许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认

微积分

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

1.高等数学概念

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 定义

设函数f(x)=0在[a,b]上有解,在[a,b]中任意插入若干个分点 a=x0

把区间[a,b]分成n个小区间

[x0,x1],...[xn-1,xn]。

在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和

如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,

这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作

定积分 即:

展开式 编辑本段微积分学的建立

从微积分成为一门

微积分入门

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

微积分入门

一.微商(导数)

1.用来分析变化的工具 2.斜率=dy/dx

3.极限:一个值无限接近另一个值的状态。表示:lim(x→0)f(x)=b 4.正向接近(+∞)与负向接近(-∞)。当从两侧接近的结果不同时,不存在极限

5.极限的模式:?lim(x→a)f(x) 不存在(如lim(x→a)1/x) ?lim(x→a)f(x)存在,但不 是f(a)(如lim(x→1)(x^2-3*x+2)/(x-1)) ?lim(x→a)f(x)存在,是f(a). 6.求导公式:lim(h→0)( f(x+h) -f(x))/h 二.导函数

1对f(x)求导得到的导函数也是函数。f ’(x)=lim(h→0)( f(x+h) -f(x))/h=lim(dx→0)dy/dx 2.导数表示的两种方式:A.如上 B.(莱布尼茨法)dy/dx df(x)/dx F’’(x)=(d/dx)*(d/dx)*y 3.求导基本公式:?p=C p’=0(p为常数)?(px)’=p ?{f(x)+g(x)}’=f’(x)+g’(x) 4.常用求导公式:?(x^n)’=lim(h→0)((x+h) ^n-x^

微积分-积分公式定理集锦

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

各种积分公式,公式大概分为四类,

北京理工大学

微积分-积分定理集锦

常用积分公式 定理

程功 2010/12/22

各种积分公式,公式大概分为四类,

定理

1.积分存在定理

1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.

2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。

2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的

a

a

a

bbb

情况)。

性质2. kf(x)dx k f(x)dx k为常数

a

a

bb

假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)

a

a

c

bcb

性质4: 1 dx badx b a

a

b

性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)

a

b

推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)

a

a

bb

推论(2):

b

a

f()xdx fx a b

a

b

性质6:设M及m分别是函数f x 上的最大值与最小值,则

m(b a) f(x)dx M(b a)

a

b

3.定积分中值定理

如果函数f x

基础物理中的数学方法(矢量和微积分)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

基础物理中的数学方法 数理难以分家,是一棵苗上的两瓣叶片。 数学课不仅仅是工具课,是科学思维训练。

学习物理需要数学工具,此处只解决工具问题。 彭桓武、林家翘的榜样。。。以下主要介绍矢量和微积分

第一章初等函数的极限和微分§1.1初等函数 1.1.1函数的概念在物理过程中,一些物理量之间有由物理规律决定的关系---函数。例如:自由落体 1一元函数高度随时间的变化自变量t,因变量h

h h0

2

gt 2

y f (x)多个自变量的函数叫做多元函数,例

t 2(h h0 )/ g时间随高度的变化自变量h,因变量t

p RT/ V

自变量为实数的函数叫实变函数;为复数的函数叫复变函数。

1.1.2常用的初等函数(1)幂函数

y ax

n

(a,n为常数)

n可为正、负、整、分数;

一般形式是多项式,上式只给出其中一项的函数式,幂函数的一种特殊形式是n=0的情况,即,

y C

(常数)

(2)三角函数和反三角函数例如:交流电的电压为

u u0 cos( t )x A cos( t )这些函数,以及其经过有限次四则运算与复合步骤所构成的函数,统称为初等函数。

在x轴上以原点为中心的简谐振动为 (3)以e为底的指数函数和对数函数

y ae x

y a l

微积分复习整理

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

微积分复习整理

第一章 极限与连续 ..................... 3

数列的极限 ............................................................................................................... 3

定义1:数列的极限 ........................................................................................... 3

定义2:发散和收敛 ........................................................................................... 3 函数的极限 ............................................................................................................... 3

定义3:函数的极限 .............................