数据挖掘决策树实验报告
“数据挖掘决策树实验报告”相关的资料有哪些?“数据挖掘决策树实验报告”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数据挖掘决策树实验报告”相关范文大全或资料大全,欢迎大家分享。
决策树习题
习题
[1]商务智能产生的原因是什么? [2]怎么认识商务智能?
[3]商务智能对企业有什么价值?
[4]举例说明商务智能在保险、证券、银行、电信、制造、零售和物流等行业的应用。 [5]讨论商务智能与ERP、CRM和SCM等业务管理系统的关系。 [6]商务智能系统包括哪些部分?分别有什么功能?
[7]结合具体的商务智能项目,说明商务智能系统的组成。 [8]讨论数据集成对商务智能项目的重要性。
[9]阅读下面的案例,分析产生问题的原因并给出对策。 一位新上任的大型国企老总曾经表达过这样的困惑。当他向下属提出,希望查看近十年企业的生产和运营数据时,他手边得到了各种各样不同的数据报表。这些数据报表大致可以分成两种类型:一种是两年前,即ERP上线之前的,这是一些简单、杂乱而又枯燥的数据。另一种是有了ERP以后的,数据变得清楚而有条理,但仍然有来自ERP、CRM、SCM以及计费业务等不同应用的数据和各种分析报告。 在仔细查看这些报表之后,这位国企老总惊讶地发现,不同的系统可以得出截然相反的两种结论。例如某一产品,它的动态成本反映在ERP系统和CRM、SCM系统中相差很大,如果引用ERP和CRM里面的数据,它就是一款很成功、销量很好的产品,但在SCM中,
决策树习题
习题
[1]商务智能产生的原因是什么? [2]怎么认识商务智能?
[3]商务智能对企业有什么价值?
[4]举例说明商务智能在保险、证券、银行、电信、制造、零售和物流等行业的应用。 [5]讨论商务智能与ERP、CRM和SCM等业务管理系统的关系。 [6]商务智能系统包括哪些部分?分别有什么功能?
[7]结合具体的商务智能项目,说明商务智能系统的组成。 [8]讨论数据集成对商务智能项目的重要性。
[9]阅读下面的案例,分析产生问题的原因并给出对策。 一位新上任的大型国企老总曾经表达过这样的困惑。当他向下属提出,希望查看近十年企业的生产和运营数据时,他手边得到了各种各样不同的数据报表。这些数据报表大致可以分成两种类型:一种是两年前,即ERP上线之前的,这是一些简单、杂乱而又枯燥的数据。另一种是有了ERP以后的,数据变得清楚而有条理,但仍然有来自ERP、CRM、SCM以及计费业务等不同应用的数据和各种分析报告。 在仔细查看这些报表之后,这位国企老总惊讶地发现,不同的系统可以得出截然相反的两种结论。例如某一产品,它的动态成本反映在ERP系统和CRM、SCM系统中相差很大,如果引用ERP和CRM里面的数据,它就是一款很成功、销量很好的产品,但在SCM中,
决策树法
精品文档就在这里
-------------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有-------------- --------------------------------------------------------------------------------------------------------------------------------------------
决策树法(Decision Tree)
决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。
选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。 从根到叶子节点都有一条路径,这条路径就是一条“规则”。 决策树可以是二叉的,也可以是多叉的。 对每个节点的衡量: 1) 通过该节点的记录数
2) 如果是叶子节点的话,分类的路径 3) 对叶子节点正
练习:决策树
1、长城公司该选择哪一种方案?
长城照相器材厂是一家有着 20年生产照相机历史的企业。最近企业实行改制,由国有独资企业改制为股份制企业,并通过猎头公司招聘李远担任公司的总经理。李远上任后要求公司的发展规划部为公司的未来发展提出方案。发展规划部提出了两个方案供公司领导班子选择:一个方案是继续生产传统产品,另一个方案是生产数码相机。 根据发展规划部的分析测算,如果照相机市场需求量大的话,生产传统相机一年可获利 30 万元,而生产数码相机则可获利 50 万元。如果市场需求量小,生产传统相机仍可获利 10 万元,生产数码相机将亏损 5万元。 根据对照相机市场所作的调研和市场分析,市场需求量大的概率为 0.8,需求量小的概率为 0.2。 以李远为总经理的公司领导班子根据发展规划部提交的方案将作出怎样的决策?
2、某公司生产一种电视机,有两种方案可选:一是建大厂,需要投资2800万元;二是建小厂,需要投资1200万元。两种方案建成后使用期都是十年。公司对十年中该电视的市场销售预测如下:高需求、中需求、低需求的概率分别为0·5、0·3、0·2。在高需求下每年获利大厂为1000万,小厂为400万;在中需求下每年获利大厂为500万,小厂为300万;在低需求
R与数据挖掘(学习决策树和随机森林的R语句)
数据挖掘报告
1
乳腺癌的分析
摘要
此次实验的目的主要是研究分类,对乳腺癌的类型良性的还是恶性的进行分类。比较一下什么方法更好。数据共包括699个观测值,每个观测有11个变量。有缺失值。主要是运用了R和SAS两个软件进行分析的。R中用的方法都是数据挖掘中的一些典型方法。SAS中是采用了判别与聚类的方法。原始数据已经将类别分好了,对于分类研究使用不同的方法看一下哪种方法的精度更高。
关键词:数据挖掘方法、判别、聚类
2
一 数据的描述:
a)一共有699个观测,11个变量。
b)变量解释:
\
\肿块的密度 取值1-10 \细胞的大小均匀度 取值1-10 \细胞的形状的均匀度 取值1-10
\边缘部分的黏着度 取值1-10 \单一的上皮细胞的大小 取值1-10 \裸露细胞核 取值1-10 \染色质 取值1-10
\正常的细胞核
数据挖掘实验报告
数据仓库与数据挖掘实验
一、聚类算法测算数据集,如下图所示的数据集:
1.对mfeat-fac数据集进行测算 (1)创建Analysis Services chf项目
打开Business Intelligence Development Studio,选择“文件”—“新建”命令,新建一个Analysis Services 项目。在“名称”文本框中将新项目命名为Analysis Services chf,单击“确定”按钮。
(2)创建数据源Chenhongfei
在右侧解决方案资源管理器中,右键单击“数据源”项,从弹出的快捷菜单中选择“新建数据源”命令。系统将打开数据源向导。单击“新建”按钮,向Adventure Works数据库添加连接。系统将打开“连接管理器”对话框,连接到数据库chenhongfei,单击“确定”按钮。单击“下一步”按钮进入“模拟信息”页,选择“默认值”。具体如下图所示
(3)创建数据源视图Chenhongfei
在解决方案资源管理器中,右键单击“数据源视图”,从弹出的快捷菜单中选择“新建数据源视图”命令,系统将打开数据源视图向导。在“欢迎使用数据源视图向导”页上,单击“下一步”按钮。选择dbo
数据挖掘实验报告
《数据挖掘》 Weka实验报告
姓名 _ 学号_ 指导教师 开课学期 2015 至 2016 学年 2 学期 完成日期 2015年6月12日
1.实验目的
基于http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+WiscOnsin+(Ori- ginal)的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。
2.实验环境
实验采用Weka平台,数据使用来自http://archive.ics.uci.edu/ml/Datasets/Br- east+Cancer+WiscOnsin+(Original),主要使用其中的Breast Cancer Wisc-
onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通
决策树法
决策树法(Decision Tree)
决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。
选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。 从根到叶子节点都有一条路径,这条路径就是一条“规则”。 决策树可以是二叉的,也可以是多叉的。 对每个节点的衡量: 1) 通过该节点的记录数
2) 如果是叶子节点的话,分类的路径 3) 对叶子节点正确分类的比例
有些规则的效果可以比其他的一些规则要好。
决策树的构成要素[1]
决策树的构成有四个要素:(1)决策结点;(2)方案枝;(3)状态结点;(4)概率枝。如图所示:
总之,决策树一般由方块结点、圆形结点、方案枝、概率枝等组成,方块结点称为决策结点,由结点引出若干条细支,每条细支代表一个方案,称为方案枝;圆形结点称为状态结点,由状态结点引出若干条细支,表示不同的自然状态,称为概率枝。每条概率枝代表
决策树法
精品文档就在这里
-------------各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有-------------- --------------------------------------------------------------------------------------------------------------------------------------------
决策树法(Decision Tree)
决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。
选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。 从根到叶子节点都有一条路径,这条路径就是一条“规则”。 决策树可以是二叉的,也可以是多叉的。 对每个节点的衡量: 1) 通过该节点的记录数
2) 如果是叶子节点的话,分类的路径 3) 对叶子节点正
决策树法
决策树法(Decision Tree)
决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。
选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。 从根到叶子节点都有一条路径,这条路径就是一条“规则”。 决策树可以是二叉的,也可以是多叉的。 对每个节点的衡量: 1) 通过该节点的记录数
2) 如果是叶子节点的话,分类的路径 3) 对叶子节点正确分类的比例
有些规则的效果可以比其他的一些规则要好。
决策树的构成要素[1]
决策树的构成有四个要素:(1)决策结点;(2)方案枝;(3)状态结点;(4)概率枝。如图所示:
总之,决策树一般由方块结点、圆形结点、方案枝、概率枝等组成,方块结点称为决策结点,由结点引出若干条细支,每条细支代表一个方案,称为方案枝;圆形结点称为状态结点,由状态结点引出若干条细支,表示不同的自然状态,称为概率枝。每条概率枝代表