阿氏圆证明过程
“阿氏圆证明过程”相关的资料有哪些?“阿氏圆证明过程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“阿氏圆证明过程”相关范文大全或资料大全,欢迎大家分享。
阿氏圆
到两点点的距离之和为定值(大于两定点距离)的点的轨迹是椭圆.
到两点点的距离之差为定值(小于两定点距离)的点的轨迹是双曲线
那么到两定点的距离之比为定值的点的轨迹是什么呢? 没错就是阿氏圆.
阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:
一动点P到两定点A、B的距离之比等于定比m:n,则P点的轨迹,是以定比m:n内分和外分定线段AB的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆. 【分析】
令B为坐标原点,A的坐标为(a,0).则动点P(x,y).满足PA/PB=k(为实数,且不为±1)
得(k2-1)(x2+y2)+2ax-a2=0, 当k不为±1时,它的图形是圆.
当k为±1时,轨迹是两点连线的中垂线. 【典型例题】
问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+1/2BP的最小值. (1)尝试解决:为了解决这个问题,下面给出一种解题思路: 如图2,连接CP,在CB上取点D,使CD=1, 则有CD/CP=CP/CB=1/2,
又∵∠PCD=∠BCP,∴△PCD∽△BCP. ∴PD/BP=1/2
中考数学几何复习---最值系列之阿氏圆问题
2
中考数学几何复习---最值系列之阿氏圆问题
在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.
所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.
如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.
下给出证明
法一:首先了解两个定理
(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则
AB DB
AC DC
=
. F
E
D
C
B
A
证明:ABD ACD
S BD S
CD =
,ABD ACD
S AB DE AB S
AC DF AC ?=
=?,即AB DB
AC DC
=
(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则
AB DB
AC DC
=
. A
B
C
D
E
证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DB
AC DC
=
.
接下来开始证明步骤:
如图,PA:PB=
MM定理证明过程-MM定理证明过程
1
无税收条件下的MM定理 1.1 假设条件
假设1:无摩擦市场假设
? 不考虑税收;
? 公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用; ? 无关联交易存在;
? 不管举债多少,公司和个人均无破产风险;
? 产品市场是有效的:市场参与者是绝对理性和自私的;市场机制是完全且完备的;
不存在自然垄断、外部性、信息不对称、公共物品等市场失灵状况;不存在帕累托改善;等等;
? 资本市场强有效:即任何人利用企业内部信息都无法套利,没有无风险套利机会; ? 投资者可以以企业借贷资金利率相同的利率借入或贷出任意数量的资金。
假设2:一致预期假设
? 所有的投资者都是绝对理性的,均能得到有关宏观、行业、企业的所有信息,并且
对其进行完全理性的前瞻性分析,因此大家对证券价格预期都是相同的,且投资者对组合的预期收益率和风险都按照马克维兹的投资组合理论衡量。
1.2 MM定理第一命题及其推论
MM定理第一命题:
有财务杠杆企业的市场价值和无财务杠杆企业的市场价值相等。
第一命题的含义:
即公司的市场价值(即债权的市场价值+股权的市场价值,不含政府的税收价值)与公司的资本结构无关,而只与其盈利水平有关。这说明未来具有完全相同的盈利能
圆切线证明的方法
切线证明法
一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.
【例1】如图1,已知AB为⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30o.求证:DC是⊙O的切线.
【例2】如图2,已知AB为⊙O的直径,过点B作⊙O的切线BC,连接OC,弦AD∥OC.求证:CD是⊙O的切线.
【例3】如图2,已知AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB.
【例4】 如图1,B、C是⊙O上的点,线段AB经过圆心O,连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是⊙O的切线吗?为什么?
A D A O B C D A O 图1 C B D C B O 图3 【例5】 如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.
【例6】 如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.
【例9】如图,AB=AC,AB是⊙O的直径,⊙O交B
圆内计算与证明
圆内计算与证明
1、如图,△ABC内接于⊙O,AD为高,E为弧BC的中点,①求证:∠EAD=∠EAO;
A ②若AB?AC=8,AD=2,求半径R。 O
C B D
E 2
2、如图,△ABC内接于⊙O ,AB=AC,E为BC延长线上一点,求证:AC=AD?AE。
A D O B E C
3、如图,A、B、C、D四点均在⊙O上 ,DC平分其外角∠ACE,DE⊥BE,①求证:DO⊥AB; ②当C点位置变化时,式子
的值是否发生变化?
D E C
O
A B
4、如图,⊙O中, 直径DE⊥弦AB,C为圆上一动点,AC与DE相交于点F,求证:
2
①OG?FG=BG?CG;②AO=OG?OF。
A
C D O G E F
B
5、如图,⊙O中,C为圆上一点,直径BD⊥AC,求证:AE?BE=EF?EC。 A
F E
B G O D
C 6、在边长为4的正方形ABCD中,以AD为直径的⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F. (1)求证CF与⊙O相切; F A D (2)求△BCF和直角梯形ADCF的周长之比
E
O
B C
o
7、如图,Rt△A
圆与相似 证明题
证 明
1.如图,已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC∥弦AD。求证:DC是⊙O的切线。
2、如图:PA切⊙O于点A,PBC交⊙O于点B、C,M是弧BC的中点,AM交BC于点D。求证:
PD2?PB?PC
3.如图,AB为⊙O的直径,P为BA的延长线上一点,PC切⊙O于点C,CD⊥AB,垂足为D,且PA=4,PC=8,求tan ∠ACD和sin ∠P的值.
4.如图,已知ABCD是圆内接四边形,EB是⊙O的直径,且EB⊥AD,AD与BC的延长线交于F,求证:
ABBC=. FDDC
5.如图,⊙O是以AB为直径的△ABC的外接圆,点D是劣弧的中点,连结AD并延长,与过
1DPBD2C点的切线交于P,OD与BC相交于点E.(1)求证OE=AC;(2)求证:=;(3)22APAC当AC=6,AB=10时,求切线PC的长.
6.已知:如图,在△ABC中,AB=AC,以AB为直径作圆分别交BC、AC于D、G,作DE⊥AC于E,连结BE交⊙O于F。
求证:(1)DE为⊙O的切线;(2)DG=DC;(3)AE·EC=BE·EF
7、已知在⊙O中,直径AB为10
圆与相似 证明题
证 明
1.如图,已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC∥弦AD。求证:DC是⊙O的切线。
2、如图:PA切⊙O于点A,PBC交⊙O于点B、C,M是弧BC的中点,AM交BC于点D。求证:
PD2?PB?PC
3.如图,AB为⊙O的直径,P为BA的延长线上一点,PC切⊙O于点C,CD⊥AB,垂足为D,且PA=4,PC=8,求tan ∠ACD和sin ∠P的值.
4.如图,已知ABCD是圆内接四边形,EB是⊙O的直径,且EB⊥AD,AD与BC的延长线交于F,求证:
ABBC=. FDDC
5.如图,⊙O是以AB为直径的△ABC的外接圆,点D是劣弧的中点,连结AD并延长,与过
1DPBD2C点的切线交于P,OD与BC相交于点E.(1)求证OE=AC;(2)求证:=;(3)22APAC当AC=6,AB=10时,求切线PC的长.
6.已知:如图,在△ABC中,AB=AC,以AB为直径作圆分别交BC、AC于D、G,作DE⊥AC于E,连结BE交⊙O于F。
求证:(1)DE为⊙O的切线;(2)DG=DC;(3)AE·EC=BE·EF
7、已知在⊙O中,直径AB为10
费马大定理证明过程
第1篇:费马大定理证明
【法1】
等轴双曲线方程的通解与费尔玛大定理的证明
滕锡和
(河南鲁山 江河中学 邮编:467337)
摘 要: 由等轴双曲线方程与费尔玛方程的内在联系,寻找到一种费尔玛方程是否有正整数解的充要条件,再由对此条件的否定,证明了费尔玛大定理,并且把费尔玛大定理与勾股定理有机地统一起来。 关键词: 完全Q解;可导出Q解;连环解
中图法分类号:O156.4 文献标识码:A 文章编号: ??1 R?通解
本文所用数集:N ---自然数集,Q ---有理数集,R ---实数集。本文讨论不超出R?的范围。
本文中方程x?y?z及同类方程中的指数n∈N,以后不再说明。 引理1 方程
x?y?z (n≥2) (1) 有N解的充要条件是它有Q解。
引理2 方程(1)x?y?z(n≥2)有N解的充要条件是它有既约N解。 这样,在以后的讨论中只需讨论Q解及既约N解的情形,可使过程简化。 引理3 方程(1)x?y?z(n≥2)有N解的充要条件是方程
X-Y?1 (n≥2) (2)
有Q解。
证明 充分性 如果方程(2)(n≥2)有Q解,设(X-Y?1为其Q解,则(??nnn?nnn?nnnnnnnnnn?wu,)?u,v,w?N两两互素?vvunwnnnnnnn
中考数学专题突破:证明圆的切线
中考数学专题突破:证明圆的切线
方法一:等角代换(☆☆☆☆☆) 方法二:利用平行线的性质(☆☆) 方法三:证明三角形全等或相似(☆) 方法四:算出角度 方法五:勾股定理
方法一:等角代换(找到与90度相等的角)
【2017山东潍坊22】如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA. (1)求证:EF为半圆O的切线;
【解析】(1)证明:连接OD, ∵D为
的中点,∴∠CAD=∠BAD,
∵OA=OD,∴∠BAD=∠ADO, ∴∠CAD=∠ADO, ∵DE⊥AC,∴∠E=90°,
∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°, ∴OD⊥EF,∴EF为半圆O的切线;
【2017山东德州20】如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC
为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;
【解析】(1)证明:
连接OE、EC,
∵AC是⊙O的直径,∴∠AEC=∠BEC=90°, ∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2, ∵OE=OC,∴∠3=∠4,
∴∠1+∠3=∠2+∠4,即∠OED=∠ACB, ∵∠ACB=90°,∴∠OED=90
初三圆的证明专题训练(答案)
下载试卷文档前说明文档:
1. 试题左侧二维码为该题目对应解析;
2. 请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查
看解析,杜绝抄袭;
3. 只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师
讲解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮。学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。
4. 自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏
->我的下载”处点击重点。
5. 在使用中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优
网的支持。
图标查看学生扫描的二维码统计图表,以便确定讲解
第1页(共32页)
2015年04月19日九年级数学组的初中数学组卷
(扫描二维码可查看试题解析)
一.解答题(共17小题)
1.(2014?辽阳)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB. (1)求证:直线BF是⊙O的切线; (2)若AB=5,sin∠CBF=
,求BC和BF的长.
2.(2014?吉林)如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆