全等三角形奥数竞赛题
“全等三角形奥数竞赛题”相关的资料有哪些?“全等三角形奥数竞赛题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“全等三角形奥数竞赛题”相关范文大全或资料大全,欢迎大家分享。
全等三角形竞赛题
全等三角形练习(二)
1.如图,△ABC是等腰三角形,D、E分别是AB及AC延长线上的点,且BD=CE, 连结DE交BC于点G,求证:GD=GE A
D
CBG
E
2.如图,在△ABC中,AB=5,AC=3,则边BC上的中线AD的取值范围是多少? A
BCD
3.如图,在△ABC内一点,DB=DA,BF=AB,∠DBF=∠DBC,求∠F的度数。 A
F D
CB
4.如图,△ABC是等边三角形,AE=CD,BQ⊥AD,垂足为Q,BE交AD于点P,求证:BP=2PQ. A
E P
G1
Q
CBD
全等三角形练习(二)
5.如图,△ABC,△BDE都是等边三角形,求证:∠BAD=∠BCE
A CB DE A6.在△ABC中,AB=AC,求证:∠B=∠C
CB
7.如图,在等腰直角三角形ABC中,∠BAC是直角,D是AC上一个点,AE⊥BD,AE的
A延长线交BC与F,若∠ADB=∠FDC,求证:D是AC的中点。
D E
C
BF
8.如图,在△ABC中,∠B=60°,∠BAC、∠ACB的平分线AD、CE相交于O,
A求证:DC+AE=AC E
O
BCD
全等三角形练习(二)
初二全等三角形奥数卷
例1. 如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是: ,并给予证明.
变式1. 如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.
例2. 如图,已知:AB=AC,∠B=∠C,且BD=CE,BE交CD于点O.连接AO. 求证:AO平分∠BAC.
变式2. 如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE. (1)求证:△ACD≌△BCE.
0
(2)若∠D=50,求∠B的度数
例3. 两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,求证: (1)△ABC≌△ADC;AC⊥BC.
(2)如果AC=6,BD=4,求筝形ABCD的面积。
变式3. 将两个全等的直角三角形ABC和DBE按图(1)方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=
全等三角形
第十一章:全等三角形导学案
黑龙江省依兰县第一中学
11.1《全等三角形》导学案
【使用说明与学法指导】
1. 课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。 2 .组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。 4.人人参与,合作学习,人人都有收获,人人都有进步。 5.带﹡的题要多动脑筋,展示你的能力。
一、学习目标:
1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。 2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。 三、学习过程
《课前预习案》
(一)、自主预习课本2—3页内容,回答下列问题:
1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做
全等三角形
第一讲 全等三角形
一、知识网络图:
1
2 3 为什么没有SSA?(反例)
三、例题解析
例:E、F分别为正方形ABCD的边BC,CD上的两个点,且BE=CF,求证:AE CF
E
D F
四、真题精讲
1.(2012 柳州)如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )
A.PO B.PQ C.MO D.MQ
2.(2012中考)如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.∠BCA=∠F B.
3.(2012 聊城)如图,四边形不一定全等的条件是( )
A.DF=BE B.AF=CE
4.(2012十堰)如图,梯形,则梯形ABCD的周长为( B A.22 B.24
5.(2012义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是 DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等) .(不添加
全等三角形教案
目录
第一篇:全等三角形教案第二篇:全等三角形的教案第三篇:八年级数学上册 11.1全等三角形的教案设计 人教新课标版第四篇:三角形全等的判定1教案第五篇:浙江省瞿溪华侨2014年中学八年级数学上册 2.8 直角三角形全等的判定教案 浙教版更多相关范文正文
第一篇:全等三角形教案
教学目标 :
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等.
2、能力目标:
(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2) 通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全(更多请搜索wWw.haOWORd.COM)等.
教学难点 :在较复杂的图形中,找出证明两个三角形全等的条件.
教学用具:直尺、微机
教学方法:自学辅导式
教学过程 :
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图.
(2)实验
让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里
全等三角形经典50题
1.如图,已知等边△ABC,P在AC延长线上一点,以PA为边作等边△APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE; (2)试证明:EM-PM=AM.
2..已知,如图①所示,在△ABC和△ADE中,AB?AC,AD?AE,?BAC??DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE?CD;②AM?AN;
(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180?,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.
ECPMAB22题C C M B 图①
N A E D B M E 图② N D A
3.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:
① AD=BE; ② PQ∥AE; ③ AP=BQ;
B
O
D
④ DE=DP; ⑤ ∠AOB=60° ⑥CP=CQ ⑦△CPQ为等边三角形.
P Q ⑧共有2对全等三角
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
全等三角形提高32题
32题(含答案)全等三角形提高AD是整数,求,D是BC中点,AD1.已知:AB=4,AC=2A CB D
∠2F是CD中点,求证:∠1=BC=DE已知:,∠B=∠E,∠C=∠D,2.A
21E B A2F DC F1=已,知∠:∠2,CD=DE A C D E B C B D ABCD如图,四边形EF。AD上。求证:BC=AB+DCABC、∠BCD,且点E在,中,AB∥DCBE、CE分别平分∠ABCD,如图所Z”字形道路已知:AB.公园里有一条“DE
BCABCDCDAB三段路旁各有一只,,在示,其中∥,C F BCCFMBEEFM的中点,试说明,在,且小石凳=,,MFE,恰好在一条直线上,.三只石凳BA
.求DF=BE,DF∥BE,CE= AF在同一条直线上,C 、E、F、A.已知:点19.
CDF.证:△ABE≌△
CEBDEBDCEABDACABAC相交于、、,垂足分别为.已知:如图,,=,,20F点,C CDBE
=.求证:D
F
B
AB CACBCDEBC AEAADACEAB= 21 . 已知:如图, =于 , 于于 , , .若???5 ,AD 的长?求A
E
C B
MB=MCME=MF。求证:,垂足分别为E、F,ACAB=AC22.如图:,ME⊥
全等三角形证明经典45题
全等三角形经典45题
1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
B
D
12AB
2. 已知:D是AB中点,∠ACB=90°,求证:CD
3. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
5. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠
C
A
B
6. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:
AE=AD+BE
7. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。
8.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
9.已知:AB=CD,∠A=∠D,求证:∠B=∠C
10.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-AB
A
D
11.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:
AC-AB=2BE
12.已知,E是AB中点,AF=BD,BD=5,AC=7,求DC
13. 如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.
14. 如图,OM平分∠POQ
全等三角形证明经典50题
1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
A B
D
C
2. 已知:D是AB中点,∠ACB=90°,求证:CD?1AB 2A D C B
3. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
A 1 2 B E C F D
4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A 1 2 F C D E B
5. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
A B
D C
6. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
7. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
A B
D
C
8. 已知:D是AB中点,∠ACB=90°,求证:CD?1AB 2A D C B
9. 已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
A 1 2 B E C
F D
10. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A 1 2 F C D E B
11. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
A B
D C
12. 已知:AC平分