park变换的物理意义
“park变换的物理意义”相关的资料有哪些?“park变换的物理意义”相关的范文有哪些?怎么写?下面是小编为您精心整理的“park变换的物理意义”相关范文大全或资料大全,欢迎大家分享。
park变换
派克变换,是将abc相变量系统各电磁量(电流、电压、磁链等),转换到以转子纵轴d、横轴q及静止轴0为坐标轴的dqo轴变量系统,使按相坐标建立的具有时变电感的变系数微分方程,变换为轴坐标表示的电感为常数的常系数微分方程。由于定子与转子之间有相对运动及转子纵轴、横轴磁路不对称,绕组间的磁祸合将随转子转角不同而周期变化。不仅互感是转子角度的函数,定子绕组自感也受转子位置的影响。
同步电机的坐标变换
首先,我们以同步电机中各绕组的空间位置以及电流的方向来看电磁之间的关系:
abziDifZd轴XiQaccyYbq轴 图1 同步发电机的绕组空间位置
由于各绕组是相互耦合的,与各绕组相交链的磁通将包括本绕组电流所产生的磁通和由其他绕组的电流产生而与本绕组交链的那部分磁通。所以磁链方程为:
??a??Laa?????b??Mba?????c???Mca??f??Mfa?????D??MDa????M?Q??QaMabLbbMcbMfbMDbMQbMacMbcLccMfcMDcMQcMafMbfMcfLffMDfMQfMaDMbDMcDMfDLDDMQDMaQ???ia????MbQ???ib?McQ???ic?
park变换
派克变换,是将abc相变量系统各电磁量(电流、电压、磁链等),转换到以转子纵轴d、横轴q及静止轴0为坐标轴的dqo轴变量系统,使按相坐标建立的具有时变电感的变系数微分方程,变换为轴坐标表示的电感为常数的常系数微分方程。由于定子与转子之间有相对运动及转子纵轴、横轴磁路不对称,绕组间的磁祸合将随转子转角不同而周期变化。不仅互感是转子角度的函数,定子绕组自感也受转子位置的影响。
同步电机的坐标变换
首先,我们以同步电机中各绕组的空间位置以及电流的方向来看电磁之间的关系:
abziDifZd轴XiQaccyYbq轴 图1 同步发电机的绕组空间位置
由于各绕组是相互耦合的,与各绕组相交链的磁通将包括本绕组电流所产生的磁通和由其他绕组的电流产生而与本绕组交链的那部分磁通。所以磁链方程为:
??a??Laa?????b??Mba?????c???Mca??f??Mfa?????D??MDa????M?Q??QaMabLbbMcbMfbMDbMQbMacMbcLccMfcMDcMQcMafMbfMcfLffMDfMQfMaDMbDMcDMfDLDDMQDMaQ???ia????MbQ???ib?McQ???ic?
坐标变换总结Clark变换和Park变换
一个坐标系的坐标变换为另一种坐标系的坐标的法则。
由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。为了简化电机的数学模型,需从简化磁链入手。
解决的思路与基本分析:
1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120度的三相正弦交流电时,在空间上会建立一个角速度为?1的旋转磁场。
又知,取空间上互相垂直的(?,?)两相绕组,且在绕组中通以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。 此时的电机数学模型有所简化。 2. 还知, 直流电机的磁链关系为: F---励磁绕组
轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。 A---电枢绕组
轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。
由于q
Matlab - Simulink中Clark变换和Park变换的深度总结
Matlab_Simulink中Clark变换和Park变换的深度总结
最近搞三相并网逆变系统,对这个坐标变换产生了很多疑惑。调模型,排错,最后发现坐标变换这个地方出来的波形总是和我设想的不一样。以前认为坐标变换都是死的,带公式即可,经过这几天的研究,发现这里面真的有些方法。基于MATLAB/Simulink中的模块,我也发现了Simulink中和一些书上不一样的地方。而且现在这个坐标变换每本书上的表示方法都不一样,甚至字母都有好多种。下面我想基于MATLAB/Simulink深刻的总结一下三相交流控制系统常用的两个变换Clark(3-2)变换和Park(2-2)变换。
首先来搞清楚为什么要用这两个变换,在三相交流系统中,常用的控制器还是经典的PI调节器。PI调节器可以对直流量进行无净差的调节,而交流量就不行,所以需要将三相交流分量转化为两项直流分量加以控制。
接下来看看Clark变换(3-2)原理。由于三相分量幅值相等,相位相差120,角速度相等,因此三相分量存在信息冗余,这时,可以去掉一项将其化为两相,这就是Clark变换的作用。由于两项分量所在的坐标轴是静止的,所以我们把此坐标轴称为两相静止坐标系。也就是说平面上的原来基于三相静止坐标系
矩阵的物理意义
矩阵的内涵
如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。
* 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用?
* 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么?
* 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为
离散傅里叶变换的物理含义
离散傅里叶变换的物理含义
(2013-02-07 08:48:12) 转载标签:
离散傅里叶变换的物理
▼
不知道为什么,我们的教科书总是不把读者最希望了解的东西告诉他们。这里可能有专业与非专业的区别。浸淫多年的专家认为必须让读者理解的东西其实读者并不关心,读者想要知道的简单答案课本上就是不说。
以离散傅里叶变换为例,许多书都会从用一系列正弦波逼近方波开始,好的,这我们都好理解,但是从此以后大堆的公式就开始上场了,以及卷积呀,皱褶呀,截断呀,延拓呀,中间经历了傅里叶变换,拉普拉斯变换,以及Z变换,时间域从连续到离散,频域从离散到连续,最终在离散傅里叶变换里时域和频域都离散了,这时频域里的幅值与相位和我们的原始信号有何联系,物理含义是什么,现在没人说了。
其实作为一个普通的,数学不怎么样的工程师,真的不关心离散傅里叶变换背后的数学原理,但是我们现在的教科书往往是告诉了他,这确实是极有用的工具,却不告诉他如何简单有效地使用它。
我在网上搜索答案,发现许多作答的人其实自己也不了解。直到找到一篇说得比较明白,但是在我读它的时候,早把网页关了,也不知应向谁致谢和致敬。下面举的例子,就基于那篇文章,有的部分是原文,在此基础上改写。
linkin park
linkin park
目录[隐藏]
乐队简介 成员资料 组建过程 乐队内涵 历史成绩 奖项提名 专辑列表 音乐单曲 乐队简介 成员资料 组建过程 乐队内涵 历史成绩 奖项提名 专辑列表 音乐单曲
? 音乐录影 ? 音乐背后 ? 慈善事迹
[编辑本段]
乐队简介
英文名:Linkin Park(前身为XERO,曾用Hybrid Theory)
中文名:林肯公园(台湾的翻译是―联合公园‖,认为linkin=linkin'=linking) 国籍:美国 组建年份:1996
音乐风格:New metal(新金属)、Post-Grunge(后车库)、Rap-Metal(说唱金属)、 Alternative Metal(另类金属) 唱片公司:华纳兄弟唱片
林肯公园是一组来自美国加州的摇滚乐队,也被认为是新金属中最成功的乐团,林肯公园在2000年以首张专辑《混合理论》(Hybrid Theory)在主流音乐市场上获得成功,该专辑销售量超过2,400万张。乐队接下来发行的《流星圣殿》(Meteora,台湾称为《天空之城—美特拉》)专辑也取得成功,在2003年的美国告示牌200专辑榜(Billboard
Sunday in the Park
新世纪大学英语阅读教程Unit3
How to write a book report?
新世纪大学英语阅读教程Unit3
Introduction You should try to write a strong introductory sentence that grabs your reader's attention. Somewhere in your first paragraph, you should also state the book's title (italicized), the topic, and the author's name. It should include publication information as well as brief statements about the book's angle, the genre, the theme, and a hint about the writer's feelings in the introduction.
新世纪大学英语阅读教程Unit3
An extended summary of the book (fiction) The set
快速傅里叶变换FFT结果的物理意义,附已验证C51,AVR单片机程序--上
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。
现在就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此啰嗦了。
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的
MATLAB中FFT结果的物理意义
FFT结果的物理意义
最近正在做一个音频处理方面的项目,以前没有学过fft,只是知道有这么个东西,最近这一用才发现原来欠缺这么多,最基本的,连fft的输入和输出各自代表什么都不知道了,终于在网上查到这样的一点资料,得好好保存了,也欢迎大家分享。
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。
采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对