九年级上册数学2.4解直角三角形
“九年级上册数学2.4解直角三角形”相关的资料有哪些?“九年级上册数学2.4解直角三角形”相关的范文有哪些?怎么写?下面是小编为您精心整理的“九年级上册数学2.4解直角三角形”相关范文大全或资料大全,欢迎大家分享。
九年级数学解直角三角形
解直角三角形(一)
教学目标
1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. 2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3.渗透数形结合的数学思想,培养学生良好的学习习惯. 教学重点、难点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用. 教学步骤
(一)复习引入
1.在三角形中共有几个元素? 2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系
ababsinA?;cosA?;tanA?;cotA?ccba babasinB?;cosB?;tanB?;cotB?ccab 如果用??表示直角三角形的一个锐角,那上述式子就可以写成. ??的对边??的邻边??的对边??的邻边sin??;cos??;tan??;cot??斜边斜边??的邻边??的对边
(2)三边之间关系
a2 +b2 =c2 (勾股定理)
(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应
解直角三角形的应用
专题复习:解直角三角形的应用
1、(2014泸州)海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值) ADCB
2、(2013泸州)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30?,在A、C之间选择一点B (A、B、C三点在同一直线上),用测角仪测得塔顶D的仰角为75?,且AB间距离为40m. (1)求点B到AD的距离;
(2)求塔高CD(结果用根号表示)。 D 30°75°A BC
3、(2011?泸州)如图,一艘船以每小时60海里的速度自A向正北方向航行,船在A处时,灯塔S在船的北偏东30°,航行1小时后到B处,此时灯塔S在船的北偏东75°,(运算结果保留根号) (1)求船在B处时与灯塔S的距离;
(2)若船从B处继续向正北方向航行,问经过多长时间船与灯塔S的距离最近.
4、(2013广安)如图9,广安市防洪指挥部发现渠江
第九讲 解直角三角形测试
出卷人:贾永亮 审核人: 数学组 时间:2010、3、10 总分:100分
解直角三角形测试
班级 姓名
一、选择与填空(每题3分共36分)
1.在直角△ABC中,∠C=90°,若AB=5,AC=4,则sinB=( ) 3434 A B C D 5543
2.在Rt△ABC中,∠C=90°,a=1,c=4,则cosA的值是( ) A
1115B C D
15 4 3
15 43.如图,tan?等于( )
15
A B 2 C D 5
25
B
BM1 C
2 ?A CNDA4.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ) A
1111 B C D 23685.如图,△ABC中,D为AC边上一点,DE⊥BC于E,若AD=2DC
直角三角形教案
教 学 设 计
月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全
年九年级解直角三角形应用题
2018年九年级解直角三角形应用题(1)
蚌埠龙湖中学刘荣发
一、航行问题
1. (2016·湖北鄂州)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域。如图所示,AB=60()2
6+海里,在B处测得C在北偏东45o的方向上,A处测得C在北偏西30o的方向上,在海岸线AB上有
一灯塔D ,测得AD=
120()2
6-海里。(1)(4分)分别求出A与C及B与C的距离AC,BC(结果保留根号)(2)(5分)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,途中有无触礁的危险(参考数据:2=,3=,6=)
二、测距离
2.(2018?潍坊)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行小时后到达B处,此时测得岛礁P在北偏东30°
方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了
在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的
速度继续航行小时即可到达.(结果保留根号)
3.(2018?长沙)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建
九年级数学解直角三角形测试题
《解直角三角形》单元检测(沪科版)
姓名:
总分:
一、选择题(共10小题,每题4分,共40分)
1、(2008庆阳市中考)正方形网格中,∠AOB如图放置,则cos?AOB=( ) A.
1255 B. C. D.2
255A 12、(2008威海市中考)在△ABC中,∠C=90°,tanA?,则sinB=3O B ( ) 第1
A.
1010
2B.3
3 C.4 D.
31010
3、在Rt△ABC中,?C?90?,BC?5,AC?15,则?A?( ) A.90? B.60? C.45? D.30?
4、如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD?2, A AC?3,则sinB的值是( ) A. B. C. D.
23323443D C B
(第4题
5、若0°<α<90°,则的值等于( )
(A)0 (B)1 (C)2 (D)3
6、一人乘雪橇沿坡度为1:3的斜坡滑下,滑下距离S(米)与时间t(秒)之间
的关系为S=10t?2t2,若滑动时间为4秒,
《解直角三角形及应用一》
《解直角三角形及应用》练习一(2015.7.10)
1.(2014?滨州)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为( ) 6 A.7.5 B. 8 C. 12.5 D. 2.(2014?连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则( ) A.B. C. D. S1=S2 S1=S2 S1=S2 S1=S2 3.(2012?杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( ) A.点B到AO的距离为sin54° B. 点B到AO的距离为tan36° 点A到OC的距离为sin36°sin54° C.D. 点A到OC的距离为cos36°sin54° 4.(2011?淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为( ) 22 A.B. (25+25)cm C. 75cm 2D. 2(25+)cm (25+)cm 5.(2011?临沂)如图,△ABC中,cosB= A. 12 B. ,sinC=,AC=5,
解直角三角形练习题
解直角三角形
1、(9分2013年19题)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAC=68°。新坝体的高为DE,背水坡坡角∠DCE=60°。求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,3=1.73).
2、(9分)(2014?河南19题)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,1.7)
3、(9分2015年20题)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的
直角三角形教案
教 学 设 计
月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全
九年级2017解直角三角形中考题
解直角三角形中考题
1.(2018?重庆)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水
平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A.21.7米 B.22.4米 C.27.4米 D.28.8米
2.(2018?绵阳)一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,
继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是( )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414) A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里
3.(2017四川达州)如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2警示牌上的影子MN长为3米,求信号塔PQ的高.