三角形外角的性质(初中)教学设计

“三角形外角的性质(初中)教学设计”相关的资料有哪些?“三角形外角的性质(初中)教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角形外角的性质(初中)教学设计”相关范文大全或资料大全,欢迎大家分享。

7.2.1三角形的外角(教学设计)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

7.2.1三角形的内角(教学设计)

教学目标:

知识技能:

1.掌握三角形内角和定理及其推理过程;

2.能应用三角形内角和定理解决一些简单的实际问题. 数学思考:

1.掌握三角形内角和定理,并初步学会利用辅助线证题; 2.培养学生观察、实验和进行简单逻辑推理的能力. 情感态度:

1.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科

学态;

2.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联

系与转化的辩证思想.

教学重点:

三角形内角和定理.

教学难点:

三角形内角和定理的证明.

教学过程:

一、导入新课

我们知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?

二、三角形内角和的证明

把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出

0

∠BCD的度数,可得到∠A+∠B+∠ACB=180。

图1 想一想,还可以怎样拼?

0

①剪下∠A,按图(2)拼在一起,可得到∠A+∠B+∠ACB=180。

图2

0

②把?B和?C剪下按图(3)拼在一起,可得到∠A+∠B+∠

三角形的外角教学反思

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

篇一:7下7.5《三角形的外角》教学反思

课题:三角形的外角(评价与反思)

(课型新授)

1.成功之处;

整体来说,本堂课的教学围绕三角形的外角识别、性质及应用展开教学,通过言简意赅的定义讲解,及时提醒易错问题,举出典型的反例(如外角的辨析)并结合图形进行分析等使本节课的重点得到了突出,难点得到了突破;并学生学习中的情况进行了点评和分析,并对有较多学生存在的问题作出了反馈;教育了学生要善于总结解题思路和方法,“在教学内容上,教学已经由注重传授单一、高深、繁难的知识技能,转向为学生提供基础性的、丰富多彩的内容,使学习更容易”,因此整体设计是成功的。

2.不足之处及改进措施:

(1)对外角与内角的关系的探索思路还可以作一些改进,让学生更有思考性。 改进措施:在学生明确了解三角形外角的概念后,提出“三角形的一个外角与三角形的三个内角”的问题,让学生画图,小组讨论,最后师生共同归纳,从而得出与相邻角和不相邻角的关系这一个系统的知识链。

(2)在引导学生认清外角以及外角的定理后,没能很好地画龙点睛:告诉学生这条性质的用处——用于求角度,所以学生练习一开始并不会应用到它,而是走了弯路用三角形的内角和去求。

改进措施:在探讨出外角性质之后,学生练习之前,明确地告诉学生这一

三角形的内角和与外角的性质

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

1、(2011 昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )

A、45° B、60° C、75° D、85°

2、(2011 义乌市)如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于( )

A、60° B、25° C、35° D、45°

3、(2011 台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确( )

A、∠2=∠4+∠7 B、∠3=∠1+∠6

C、∠1+∠4+∠6=180° D、∠2+∠3+∠5=360°

4、(2011 台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何( )

A、36 B、72

C、108 D、144

5、(2011 台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?( )

A、37 B、57

C、77 D、97

6、(2011 宁波)如图所示,AB∥CD,∠E=37&#

三角形的外角教学设计 人教版〔优秀篇〕

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

《三角形的外角》教案

【教学目标】

1.了解三角形外角的概念和性质,初步学会几何简单推理.

2.经历探索三角形外角性质的过程,初步体会实验---猜想---证明得出结论的科学探究方法,感受从特殊到一般的研究方式.

3.养成主动探索、勇于发现,敢于实践的良好学习习惯. 【教学重点】三角形的外角及其性质.

【教学难点】灵活运用三角形外角性质进行有关计算和证明. 【教学方法】启发探究式.

【教学手段】多媒体(投影仪,计算机). 【教学过程】 一、复习引入,创设情境: 1.三角形的内角和定理是什么?

2.美丽的国旗上的五角星的顶角和你知道是多少吗?(展示国旗和转动的五角星) 二、观察归纳,探究新知

(一)探索三角形外角的概念: 1.做一做(画出图形)

画△ABC,延长BC边,得到∠ACD. 2.看一看(观察特征) A∠ACD的特征:

①∠ACD的顶点是 ; ②一边AC是 ; CD B③另一边CD是 .

3.说一说(归纳定义)

三角形的外角:三角形一边与另一边的延长线组成的角. 4. 想一想(深入理解)

以某三角形

三角形的内角与外角

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

经典题讲解,一题多解,方法归纳。

三角形的内角与外角

经典题讲解,一题多解,方法归纳。

A x

方程思想解:设∠1=∠2=x,则∠3=∠4=2x,在△ABC中

x B D

2x

2x C

X+2X+63°=180° X=39° ∠DAC=63°-39°=24°

经典题讲解,一题多解,方法归纳。

C

E D 2 1

B

A

∠ADE=∠1+∠A ∠CDE=∠2+∠C ∠ADC=∠A+∠ABC+∠C

经典题讲解,一题多解,方法归纳。

C

D

∠A+∠B+∠C

B E

A

∠B+∠C

经典题讲解,一题多解,方法归纳。

转化思想C 1 D

B

A ∠ADC=180°-∠1-∠2

△ADC 中 △ABC中

∠DAB+∠B+∠BCD=180-∠1-∠2 ∠ADC=∠A+∠B+∠C

经典题讲解,一题多解,方法归纳。

D

A 1 B C

2 E

∠BAC>∠1 ∠1=∠2 ∠2>∠B ∠BAC>∠B 证不等关系常用外角性质,有时还需找准过渡量。

经典题讲解,一题多解,方法归纳。

转化:用外角性质将分散的条件聚拢。D

E

C

∠A+∠D

A

∠E+∠C B ∠A+∠B+∠C+∠D+∠E=180°

经典题讲解,一题多解,方法归纳。

对顶三角形的性

3.6三角形外角定理

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

3 .6关注三角形的外角

如图. ∠1是△ABC的一个外角, ∠1与图中的其 A 它角有什么关系?

能证明你的结论吗?

∠1+∠4=1800 ; ∠1>∠2; ∠1>∠3; ∠1=∠2+∠3.

2

3

B

4 1 C

D

证明:∵∠2+∠3+∠4=1800(三角形内角和定理), ∠1+∠4=1800(平角的意义), ∴∠1= ∠2+∠3.(等量代换). ∴ ∠1>∠2,∠1>∠3(和大于部分).

三角形的一个外角等于和它不相邻的两个内角的和. 三角形的一个外角大于任何一个和它不相邻的内角.

三角形的一个外角等于和它不相邻的两个内角的和. 三角形的一个外角大于任何一个和它不相邻的内角. 在这里,我们通过三角 形内角和定理直接推导 出两个新定理.像这样, 由一个公理或定理直接 推出的定理,叫做这个公 理或定理的推论.

A 2

3

B

4 1 C

D

推论可以当作定理使用.

三角形内角和定理的推论: 推论1: 三角形的一个外角等于和它不相邻的 两个内角的和. 推论2: 三角形的一个外角大于任何一个和它 不相邻的内角. △ABC中: ∠1=∠2+∠3; ∠1>∠2,∠1>∠3.

3

B

A 2

4 1 C

D

这个结论以后可以直接运用.

E

例1 已

9.1.2三角形外角和2

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

年级 课段题课前 备准 教 学目

标年级七学科

学数主备 人课时1

.9.2 1三形角的角外 2

和1、进步熟一三角形悉的角和和内外角和有性质 2、使关生学熟练能灵地活利用角三形内和角,外和以及角外的两条性角进质行关有计算

。教学程过一、复提习问增、删评

点.三角1形内角的和外与角各和多是少 2.三角形的?角有外些性哪质 二、?授新 例 .1△在ABC ,∠A=∠中=B∠,求C△AC 各内角B的数度 。分:析由知已条可件得∠=2∠A,B∠=3∠AC所 以以可据三根形角 的内和等于角1 0°来解决8 教 例 。2:如图,在A△C 中B,D⊥BCA,EA平 ∠分BCA∠,B=8°0,C=∠6 40

学)过 1()你会∠求DEA 的度吗数?你的同与交流伴。 程( 2你)能现∠发DA 与E∠、B∠C之 的间系关吗 (3)?只知若道∠B-C=2∠0°你,求能出∠AED 度数的吗? 析分(1)∠DAE :哪是三角个的形内角外或? 角(2在)AD△E ,已中什知么要求∠D?AE,需必先求么?什( )∠3ED 是哪A个角三的外角? 形()4在AE△C 中已知什么?求要A∠BE只,需什求么

(5)怎求样E∠AC 度数?的 做一 做P6 5习

相似三角形的性质

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

篇一:相似三角形的定义与性质

同学个性化教学设计

年 级: 九年级教 师: 张永慧科 目:数学 班 主 任: 朱敏_ 日 期: _时 段: ___

1 海到无边天作岸,山高绝顶我为峰

校长签字: ___________日期3 海到无边天作岸,山高绝顶我为峰

篇二:相似三角形性质

精锐教育学科辅导讲义

篇三:相似三角形的性质 导学案

《相似三角形的性质》 学案

【学习目标】

知识与技能:理解并运用相似三角形的性质,灵活运用相似三角形的性质解题。 过程与方法:经历探索相似三角形性质的过程,发展逻辑思维能力和应用能力。 情感与价值观:感受数学学习中的推理过程,积极参与推理活动。

【温故知新】

1、相似三角形的判定方法有哪一些?

2、如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE 与△ABC的相似比为 。 3、已知:△ABC△∽ABC,AB=2cm,BC=3cm,AB=4cm, AC=2cm,则AC= cm, BC=cm。

''

''

'''

''

B

【学习过程】

1、自主学习:两个相似三角形,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.

例如,如图:△ABC和△A′B

初中数学三角形(二)特殊三角形

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

三角形(二)——特殊三角形

【等腰三角形】

1.有两条边相等的三角形是等腰三角形,等腰三角形是轴对称图形。 2.等腰三角形的两个底角相等(简写成“等边对等角”)。

3.等腰三角形顶角的平分线平分底边并且垂直于底边。(常称为“三线合一”)。 4.如果一个三角形有两个内角相等,则它是等腰三角形。

姓 名: 【典型例题】

例1.已知?ABC中,那么?ABC一定是( ) ?B与?C的平分线的交点P恰好在BC边的高AD上, (A)直角三角形 (B)等边三角形 (C)等腰三角形 (D)等腰直角三角形

第12届(2001年)初二培训

例2.如图2,在?ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC和∠ACB,它们相交于F点,是图中等腰三角形的个数是( )

第14届(2003年)初二培训

图2

例3.等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )。

图1

(A)30° (B)30°或150° (C)120°或150° (D)30°或120°或150°

第10届(1999年)初二第

《全等三角形》教学设计

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

《全等三角形》教学设计

它反映了现 实生活中存在着 大量的全等图形.

图片的收 集与制作

学生分组 讨论、思 考探究

片断 2:一幅漂亮的山水倒影画,一幅 用七巧板拼成的美丽图案. 片断 3:教科书第 90 页的 3 幅图案. 2.学生讨论: (1)从上面的片断中你有什么感受? (2)你能再举出生活中的一些类似例 子吗? 1.收集学生讨论中的图片. 2. 讨论(或介绍)用复写纸、 手撕、 剪纸、 扎针眼等制作类似图形的方法. 1.上面这些图形有什么共同的特征? 2,有人用“全等形”一词描述上面的图 形,你认为这个词是什么含义?

对学生进行操作 技能的培训与指 导. 对学生的

不同回 答,只要合理,就 给予认可.

1.给出“全等形”“全等三角形”的定 、 义. 2.列举反例,强调定义的条件. 3. 提出问题 “你能构造一对全等三角形” 吗?你是如何构造的,与同伴交流. 4.全等三角形的对应元素及性质:教师 结合手中的教具说明(学生运用自制学具理 解)对应元素(顶点、边、角)的含义,并引导 学生观察全等三角形中对应元素的关系,发 现对应边相等, 对应角相等(教师启发学生根 据“重合”来说明道理). 1.学生用半透明的纸描绘教科书 91 页 图 13.1—l 中