小学奥数同余定理

“小学奥数同余定理”相关的资料有哪些?“小学奥数同余定理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学奥数同余定理”相关范文大全或资料大全,欢迎大家分享。

小学奥数同余问题

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

小学奥数同余问题

同余问题(一)

在平时解题中,我们经常会遇到把着眼点放在余数上的问题。如:现在时刻是7时30分,再过52小时是几时几分?我们知道一天是24

小时,

,也就是说52小时里包含两个整天再加上4小时,这样就在7

时30分的基础上加上4小时,就是11时30分。很明显这个问题的着眼点是放在余数上了。

1. 同余的表达式和特殊符号

37和44同除以7,余数都是2,把除数7称作“模7”,37、44对于模7同余。

记作:(mod7) “”读作同余。

一般地,两个整数a和b,除以大于1的自然数m所得的余数相同,就称a、b对于模m同余,记作:

2. 同余的性质

(1)(每个整数都与自身同余,称为同余的反身性。)

(2)若,那么(这称作同余的对称性)

(3)若性)

(4)若,,则(这称为同余的传递,,则()(这称为同余的可加性、可减性)

(称为同余的可乘性)

(5)若有趣的现象:

如果 ,则,n为正整数,同余还有一个非常

小学奥数同余问题

那么(的差一定能被k整除)

这是为什么呢?

k也就是的公约数,所以有

下面我们应用同余的这些性质解题。

【例题分析】

例1. 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?

分析与解答:

假设这个自然数是a,

数论之同余定理

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

第六讲 数论之同余定理、个位律 射雕英雄传第29回写到,黄蓉给瑛姑出了三道算题.其中第三题是想 所谓的“鬼谷算题”:今有物不知其数,三三数之剩二,五五数之剩三,七 挑七数之剩二,问物几何? 战 这个其实是我国古代比较有名的一道题.你能答出黄蓉的这道题 吗? 吗 ? 回顾

【例1】 (北大附中入学测试题)有一个自然数,用它分别去除63,90,130都有余数,这三个余数的和是25。这三个余数中最大的一个是多少?

【例2】 (人大附中入学测试题)一个两位数被它的各位数字之和去除,问余数最大是多少?

专题

题型一、余数规律

余数定理:

a:两数的和除以m的余数等于这两个数分别除以m的余数和。

实例:7÷3=?1,5÷3=?2,这样(7+5)÷3的余数就等于1+2=3,所以余0。 b: 两数的差除以m的余数等于这两个数分别除以m的余数差。

实例:8÷3=?2,4÷3=?1,这样(8-4)÷3的余数就等于2-1=1,所以余1。 如果是(7-5)÷3呢? 会出什么问题?

c: 两数的积除以m的余数等于这两个数分别除以m的余数积。

实例:7÷3=?1,5÷3=?2,

数论之同余定理

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

第六讲 数论之同余定理、个位律 射雕英雄传第29回写到,黄蓉给瑛姑出了三道算题.其中第三题是想 所谓的“鬼谷算题”:今有物不知其数,三三数之剩二,五五数之剩三,七 挑七数之剩二,问物几何? 战 这个其实是我国古代比较有名的一道题.你能答出黄蓉的这道题 吗? 吗 ? 回顾

【例1】 (北大附中入学测试题)有一个自然数,用它分别去除63,90,130都有余数,这三个余数的和是25。这三个余数中最大的一个是多少?

【例2】 (人大附中入学测试题)一个两位数被它的各位数字之和去除,问余数最大是多少?

专题

题型一、余数规律

余数定理:

a:两数的和除以m的余数等于这两个数分别除以m的余数和。

实例:7÷3=?1,5÷3=?2,这样(7+5)÷3的余数就等于1+2=3,所以余0。 b: 两数的差除以m的余数等于这两个数分别除以m的余数差。

实例:8÷3=?2,4÷3=?1,这样(8-4)÷3的余数就等于2-1=1,所以余1。 如果是(7-5)÷3呢? 会出什么问题?

c: 两数的积除以m的余数等于这两个数分别除以m的余数积。

实例:7÷3=?1,5÷3=?2,

数论之同余定理

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

第六讲 数论之同余定理、个位律 射雕英雄传第29回写到,黄蓉给瑛姑出了三道算题.其中第三题是想 所谓的“鬼谷算题”:今有物不知其数,三三数之剩二,五五数之剩三,七 挑七数之剩二,问物几何? 战 这个其实是我国古代比较有名的一道题.你能答出黄蓉的这道题 吗? 吗 ? 回顾

【例1】 (北大附中入学测试题)有一个自然数,用它分别去除63,90,130都有余数,这三个余数的和是25。这三个余数中最大的一个是多少?

【例2】 (人大附中入学测试题)一个两位数被它的各位数字之和去除,问余数最大是多少?

专题

题型一、余数规律

余数定理:

a:两数的和除以m的余数等于这两个数分别除以m的余数和。

实例:7÷3=?1,5÷3=?2,这样(7+5)÷3的余数就等于1+2=3,所以余0。 b: 两数的差除以m的余数等于这两个数分别除以m的余数差。

实例:8÷3=?2,4÷3=?1,这样(8-4)÷3的余数就等于2-1=1,所以余1。 如果是(7-5)÷3呢? 会出什么问题?

c: 两数的积除以m的余数等于这两个数分别除以m的余数积。

实例:7÷3=?1,5÷3=?2,

小学五年级奥数—数论之同余问题

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

数论之同余问题

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”

余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

知识点拨:

一、带余除法的定义及性质:

一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。这里: (1)当r?0时:我们称a可以被b整除,q称为a除以b的商或完全商 (2)当r?0时:我们称a不可以被b整除,q称为a除以b的商或不完全商 一个完美的带余除法讲解模型:

如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:

1.余数的加法定理

a与b的和除以c的余数

五年级奥数同余问题

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

-- -- 1. 两数相除商37余73,求被除数的最小值。

解析:2881

2. 两数相除,商4余8,被除数、除数、商和余数的和为415,则被除数是多少? 解析:被除数是424,除数是79.

3. 小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,求原来 的除数。

解析:除数是10.

4. 小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,余数也 比原来大了3.求原来的除数。

解析:除数是9.

5. 求算式3218+26-757除以9的余数。

解析:3.

6. 求413除以5的余数。

解析:1.

7. 2461×135×6047÷11的余数是多少?

解析:5.

8. 19992000÷7的余数是多少?

--

解析:0.

9.求123456789101112……199200除以9的余数是________;

解析:3.

10. 数11…1(2007个1),被13除余多少?

解析:7

11.已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是.

解析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51&#

数论之同余定理、个位律

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

数论之同余定理、个位律

第六讲 数论之同余定理、个位律

射雕英雄传第29回写到,黄蓉给瑛姑出了三道算题.其中第三题是想所谓的“鬼谷算题”:今有物不知其数,三三数之剩二,五五数之剩三,七挑七数之剩二,问物几何?

战 这个其实是我国古代比较有名的一道题.你能答出黄蓉的这道题吗? 吗?回顾

【例1】 (北大附中入学测试题)有一个自然数,用它分别去除63,90,130都有余数,这三个余数的和是25。这三个余数中最大的一个是多少?

【例2】 (人大附中入学测试题)一个两位数被它的各位数字之和去除,问余数最大是多少?

数论之同余定理、个位律

专题

题型一、余数规律 余数定理:

a:两数的和除以m的余数等于这两个数分别除以m的余数和。

实例:7÷3= 1,5÷3= 2,这样(7+5)÷3的余数就等于1+2=3,所以余0。

b: 两数的差除以m的余数等于这两个数分别除以m的余数差。

实例:8÷3= 2,4÷3= 1,这样(8-4)÷3的余数就等于2-1=1,所以余1。

如果是(7-5)÷3呢? 会出什么问题?

c: 两数的积除以m的余数等于这两个数分别除以m的余数积。

实例:7÷3= 1,5

小学奥数几何之蝴蝶定理

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

几何之蝴蝶定理

一、 基本知识点

定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。

S1 : S2 = a : b

定理2:等分点结论( 鸟头定理)

如图,三角形△AED的面积占三角形△ABC的面积的

313?? 5420

定理3:任意四边形中的比例关系( 蝴蝶定理)

1) S1∶S2 =S4∶S3 或 S1×S3 = S2×S4

上、下部分的面积之积等于左、右部分的面积之积

2)AO∶OC = (S1+S2)∶(S4+S3)

梯形中的比例关系( 梯形蝴蝶定理)

1)S1∶S3 =a2∶b2

上、下部分的面积比等于上、下边的平方比

2)左、右部分的面积相等

3)S1∶S3∶S2∶S4 =a2∶b2 ∶ab∶ab

4)S的对应份数为(a+b)2

定理4:相似三

奥数专题-余数定理

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

练习二(余数定理)

A组

1、甲数除以11的余数为9,乙数除以11的余数为7,丙数除以11的余数为6,那么:

①(甲数+乙数+丙数)÷11的余数为 ; ②(甲数+乙数-丙数)÷11的余数为 ; ③(甲数×乙数×丙数)÷11的余数为 ; ④(甲数-乙数+丙数)÷11的余数为 。

2、17×354×409×672除以3所得的余数是 。

3、5678964×47165432的积除以7的余数是 。

4、19917被7除,余数是 。

5、(203×203×…×203-2003)除以29的余数是 。 2002个203

6、某个大于1的自然数分别除442、297、210得到相同的余数,则该自然数是 。

7、有一个(大于1)数,除300,262,205得到相同的余数,这个数 是 (第一届华杯赛题)

8、某个自然数分别除13511、13903、14589得到的余数相同,则该自然数最大是 。

9、有一个自然数,用它分别去除63、91、129得到三个余数的和是25,这个数是 。(1998年

线性同余 产生伪随机数

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

自己领悟把

一.计算机中随机数的产生

现在,在计算机,用来产生随机数的算法是“线性同余”法。所谓线性同余,其实就是下面两个式子。假设I就是一个随机数的序列,Ij+1与Ij的关系如下: Ij+1 =Ij * a+c (mod m) 或是Ij+1 =Ij *a (mod m),

其中,不妨取a=16807,m=2147483647,以为一常数。写个简单的程序就是: long r;

void scand( long v)//初始化随机种子数 { r = v; }

long rand()//产生随机数 {

r = (r*a + c)%m;//a,c,m为常数 return r; }

再看一下稍复杂一点的:(Random () 的 Borland 的实现) long long RandSeed = #### ; unsigned long Random(long max) {

long long x ; double i ;

unsigned long final ; x = 0xffffffff; x += 1 ;

RandSeed *= ((long long)134775813); RandSeed += 1 ;

RandSeed