宇称不守恒定律的实际应用
“宇称不守恒定律的实际应用”相关的资料有哪些?“宇称不守恒定律的实际应用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“宇称不守恒定律的实际应用”相关范文大全或资料大全,欢迎大家分享。
宇称不守恒定律研究报告
宇称不守恒定律研究报告
1408304009 秦明达
当杨振宁和李政道在1957年获得诺贝尔奖的时候,华人科学家第一次引起了世界的大范围关注。很多人知道他们获得了诺贝尔奖,其中也有很多人知道,他们提出了宇称不守恒的理论获得了诺贝尔奖,但却很少有人真正知道,什么是宇称不守恒。
说到宇称不守恒,那么,首先我们就需要知道什么是宇称。所谓宇称,粗略的说,可理解为“左右对称”或“左右交换”。对称的现象普遍存在于自然界的事物中,事物运动变化的规律左右对称也是人们的普遍认识。在物理学中,对称性具有更为深刻的含义,指的是物理规律在某种变换下的不变性。例如进行牛顿运动定律实验时,前面放一面镜子,如果我们看镜内的物理规律性,则同镜外完全相同。就是说力学规律对于镜象反演不变,具有空间反演不变性。同样对于麦克斯韦方程组和薛定谔方程都具有空间反演不变性。不变性原理通常与守恒定律联系在一起,比如动量守恒定律是物理定律在空间平移下的不变性的体现;能量守恒定律与时间平移不变性相联系;角动量守恒定律是物理定律空间旋转对称性的体现等。为了描述这种与空间反演对称性相联系的物理量,引入了“宇称”的概念。因为连续两空间反演(镜象反射)就等于本身,第一次反射,第二次反射。因此宇称这个量
动量守恒定律应用(三)
定律内容:一个系统不受外力或者所受外力之和为 零,这个系统的总动量保持不变。这个 结论叫做动量守恒定律。
动量守恒定律的表达式:
动量守恒定律的条件:(1)系统的合外力为零 (2)当内力远大于外力,作用 时间非常短时。如碰撞、爆炸、 反冲等。 (3)当某一方向合外力为零时, 这一方向的动量守恒。
动量守恒定律的典型应用1.子弹打木块类模型:子弹打木块实际上是一种完全非弹性碰撞。作 为一个典型,它的特点是:子弹以水平速度射 向原来静止的木块,并留在木块中跟木块共同 运动。下面从动量、能量和牛顿运动定律等多 个角度来分析这一过程。
摩擦力(阻力)与相对位移的乘积等于系统 机械能(动能)的减少。
例1 设质量为m的子弹以初速度v0射向静止 在光滑水平面上的质量为M的木块,并留在 木块中不再射出,子弹钻入木块深度为d。 求木块对子弹的平均阻力的大小和该过程中 木块前进的距离。v0 v
S
S+d
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大 小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d
mv0 M
机械能守恒定律 能的转化和守恒定律
课时作业18 机械能守恒定律 能的转化和守恒定律
时间:45分钟 满分:100分
一、选择题(8×8′=64′)
1.下列四个选项的图中,木块均在固定的斜面上运动,其中图A、B、C中斜面是光滑的,图D中的斜面是粗糙的,图A、B中的F为木块所受的外力,方向如图中箭头所示,图A、B、D中的木块向下运动,图C中的木块向上运动.在这四个图所示的运动过程中机械能守恒的是( )
图1
解析:依据机械能守恒条件:只有重力做功的情况下,物体的机械能才能保持守恒,由此可见,A、B均有外力F参与做功,D中有摩擦力做功,故A、B、D均不符合机械能守恒的条件,故答案为C.
答案:C
2.在一种叫做“蹦极跳”的运动中,质量为m的游戏者身系一根长为L、弹性优良的轻质柔软橡皮绳,从高处由静止开始下落1.5 L时到达最低点,若在下落过程中不计空气阻力,则从橡皮绳开始拉紧,到游戏者到达最低点的过程中,以下说法错误的是( )
A.速度先增大后减小 C.动能增加了mgL
B.加速度先减小后增大 1
D.重力势能减少了mgL
2
解析:橡皮绳拉紧的开始阶段:mg-F=ma,a向下减小,但速度增加,当mg=F以后,又有:F-mg=ma′,a′向上增大,速度减小,故
《动量守恒定律的应用》(一)
高三物理练习
《动量守恒定律的应用》(一)
1.以下说法中,正确的是( )
A.一个物体所受合外力为零,它的机械能一定守恒 B.一个物体做匀速直线运动,它的机械能一定守恒
C.一个物体所受合外力的冲量不为零,它的机械能可能守恒
D.一个物体所受的合外力对它不做功,它一定保持静止或匀速直线运动状态 2.在光滑水平面上有两个在同一直线上运动的甲球和乙球.甲和乙的动量大小相等,质量之比为1∶5,发生正碰后甲和乙的动量大小之比为1∶11,则碰撞前后甲的速度大小之比为( ) A.5∶11 B.11∶5 C.6∶1 D.5∶1
4.如图一轻弹簧一端系在墙上的O点自由伸长到B点,今将一质量为m的小物体靠着弹簧,将弹簧压缩到A点,然后释放,小木块能在水平面上运动到C点静止,AC距离为s;若将小物体系在弹簧上,在A由静止释放,则小物体将做阻尼运动到最后静止,设小物体通过总路程为L,则下列答案中正确的是( )A.L>s B.L=s C.L<s D.BC都可能
5.以24 m/s的速度从地面竖直抛出一物体,上升的最大高度为24 m,设物体运动过程中空气阻力大小不变
动量-动量守恒定律的应用
动量守恒定律的应用
要点一 相对运动问题
即学即用
1.人类发射的总质量为M的航天器正离开太阳系向银河系中心飞去,设此时航天器相对太阳中心离去的速度大小为v,受到的太阳引力可忽略,航天器上的火箭发动机每次点火的工作时间都很短,每次工作喷出的气体质量都为m,相对飞船的速度大小都为u,且喷气方向与航天器运动方向相反,试求:火箭发动机工作3次后航天器获得的相对太阳系的速度. 1答案 v+(1?1?)mu
MM?mM?2m要点二 多物体系统的动量守恒
即学即用
2.如图所示,mA=1 kg,mB=4 kg,小物块mC=1 kg,ab、dc段均光滑,且dc段足够长;物体A、B上表面粗糙,最初均处于静止.小物块C静止在a点,已知ab长度L=16 m,现给小物块C一个水平向右的瞬间冲量I0=6 N·s.
(1)当C滑上A后,若刚好在A的右边缘与A具有共同的速度v1(此时还未与B相碰),求v1的大小.
(2)A、C共同运动一段时间后与B相碰,若已知碰后A被反弹回来,速度大小为0.2 m/s,C最后和B保持相对静止,求B、C最终具有的共同速度v2. 答案 (1)3 m/s (2)1.24 m/s
题型1 “人船模型”问题
【例1】如图所示,小
动量守恒定律的综合应用
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
1.章末复习2.题型详解3.图文并茂
电荷及其守恒定律
篇一:第1节 电荷及其守恒定律知识点及典型例题
第1节 电荷及其守恒定律
1.自然界中有两种电荷,同种电荷相互排斥,异种电荷相
互吸引。
2.使物体带电的方式有三种:摩擦起电、感应起电、接
触起电,这三种起电方式本质都是电子的转移,起电的
过程遵循电荷守恒定律。
3.电子或质子所带的电荷量是最小的电荷量,这个电荷
量叫元电荷,用e表示,e=1.60×10-19 C。
4.两个完全相同的带电小球相互接触后,它们把总电荷平均分配。设两个小球的电荷量分
q1+q2别为q1和q2,则接触后每个小球的电荷量为q1、q2包含了电荷的电性。 2
1.物质的电结构
原子由带正电的原子核和带负电的电子组成,电子绕原子核高速旋转。原子核的正电荷的数量跟核外的电子的负电荷数量相等,所以整个原子对外界较远位置表现为电中性。 金属原子中离原子核较远的电子,往往会脱离原子核的束缚而在金属中自由活动,这种能自由活动的电子叫做自由电子,失去电子的原子便成了带正电的离子。
2.两种电荷及其相互作用规律
自然界中只有两种电荷,即正电荷和负电荷,规定用丝绸摩擦过的玻璃棒所带的电荷为正电荷,用毛皮摩擦过的硬橡胶棒所带的电荷为负电荷,同种电荷相互排斥,异种电荷相互吸引。
3.三种起电方法
(1)带电的导体带上电荷的
验证动量守恒定律
验证动量守恒定律
验证动量守恒定律
【实验目的】 实验目的】利用平抛运动验证动量守恒
【实验器材】 实验器材】天平、刻度尺、游标卡尺( 天平、刻度尺、游标卡尺(测小球 直径)、碰撞实验器、复写纸、白纸、 )、碰撞实验器 直径)、碰撞实验器、复写纸、白纸、 重锤、 重锤、两个直径相同质量不同的小球
验证动量守恒定律
装置m1 说明: 说明: m1 为入射小球, m2 为被碰小球。 且m1>m2 m2
o’
验证动量守恒定律的实验装置
返回目录 返回目录
验证动量守恒定律
实验原理1、两小球在水平方向发生正碰,水平方向合外力为零, 两小球在水平方向发生正碰,水平方向合外力为零, 动量守恒。 动量守恒。
mAvA=mAvA′+mBvB′
2、本实验在误差允许的范围内验证上式成立。两小球 本实验在误差允许的范围内验证上式成立。 碰撞后均作平抛运动, 碰撞后均作平抛运动,用水平射程间接表示小球平抛的 平抛运动 初速度: 初速度: OP----mA以vA平抛时的水平射程 OP----m ---OM-------m OM----mA以vA’平抛时的水平射程 ----m O′N----mB以vB ’平抛时的水平射程
验证的表达式:mAOP=mAOM+mBO’N
验证动量守恒定律
§2 动量守恒定律及其应用
高三总复习学案
§2 动量守恒定律及其应用
教学目标:
1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问
题.
2.掌握应用动量守恒定律解决问题的一般步骤.
3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点:
动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点:
应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法:
1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤.
2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性.
3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容
一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
??m2v2? 即:m1v1?m2v2?m1v12.动量守恒定律成立的条件
⑴系统不受外力或者所受外力之和为零;
⑵系统受外力,但外力远小于内力,可以忽略不计;
⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
动量——第二节 动量守恒定律
第1页
高三
14.1动量守恒定律及其应用
动量守恒定律及其应用
一、动量与动能和动能变化与动量变化的区别和联系
1、对于质量一定的物体,下列关于动量与动能的说法正确的是( )。
A.物体的动量不变,动能一定不变 B.物体的动能不变,动量一定不变
C.做平抛运动的物体,动量变化的方向不断改变 D.物体动量变化的方向总是与合力方向一致
2、一个质点受到外力的作用,若作用前后的动量分别为p、p',动量的变化量为Δp,速度的变化量为Δv,动能的变化量为ΔEk。则下列说法正确的是( )。
A.p'=-p是不可能的 B.p'=-p是可能的 C.Δp垂直于Δv是可能的 D.Δp≠0,ΔEk=0是不可能的 3、如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相等的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是( )。
A.A开始运动时 B.A的速度等于v时
C.B的速度等于零时 D.A和B的速度相等时
二、对动量守恒条件的理解
4、如图所示,A、B两质量相等的物体静止在足够长的平板小车C上,A、B之间有一根被压缩的弹簧,A、B与平板车的上表