全桥llc电路工作原理

“全桥llc电路工作原理”相关的资料有哪些?“全桥llc电路工作原理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“全桥llc电路工作原理”相关范文大全或资料大全,欢迎大家分享。

全桥LLC

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

2 LLC谐振全桥变换器拓扑及工作机理

全桥变换器由于具有较高功率密度而广泛应用于中、大功率场合,其主电路拓扑如图1所示。该电路主要包括初级4个功率MOSFET、谐振电感Lr、谐振电容Cr、励磁电感Lm,次级则由整流二极管VD5和VD6以及输出滤波电容Co组成。

可见,拓扑中次级没有滤波电感,整流二极管无需缓冲吸收网络,与传统的全桥拓扑相比,其元件大为减少,且变换器的磁性元件能很容易集成到一个磁芯,主变压器的漏感和Lm也能被利用。

LLC谐振全桥变换器包括如图2所示的3个工作区域:其中区域1,2的主开关管工作在ZVS状态,而区域3的主开关管工作在ZCS状态。对于选用MOSFET作为主开关管的高频LLC变换器而言,工作在ZVS条件下其开关损耗最小,工作状态较佳,故其所需的工作区域为增益曲线的右侧(其中负斜率表示初级MOSFET工作在ZVS模式)。当LLC变换器工作在如图2所示的ωs=ωr状态下时,其增益由变压器的匝比决定,从效率和EMI的角度而言,在这个工作点状态下由于正弦初级电流、MOSFET和次级整流二极管都得到最优化利用,故为最佳工作点,但是这只能在特定的工作电压以及负载条件下得到。

LLC谐振全桥变换器存在两个谐

LLC移相全桥

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

移相全桥学习笔记

在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。但受制于开关器件的损耗,无法将开关频率提升以获得更高的功率密度。例如:一个5KW的电源,采用硬开关全桥,即使效率做到92%,那么依然还有400W的损耗,那么每提升一个点的效率,就可以减少50W的损耗,特别在多台并机以及长时间运行的系统中,其经济效益相当可观。

随后,人们在硬开关全桥的基础上,开发出了一种软开关的全桥拓扑——移相全桥(Phase-Shifting Full-Bridge Converter,简称PS FB),利用功率器件的结电容与变压器的漏感作为谐振元件,使全桥电源的4个开关管依次在零电压下导通(Zero voltage Switching,简称ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。

上图是移相全桥的拓扑图,各个元件的意义如下:

Vin:输入的直流电源

T1-T4:4个主开关管,一般是MOSFET或IGBT

T1,T2称为超前臂开关

单相全桥逆变电路原理

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

单相全桥型逆变电路原理

+

V1 VD1 R io uo VD2 V4 -

V3 VD3

L Ud C V2 VD4

电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo的波形和半桥 电路的波形uo形状相同,也是矩型波,但幅值 高出一倍,Um=Ud

输出电流io波形和半桥电路的io形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间

u o U m O t - U m o

i

t 3 t t 2 1 V 1 VD 1 VD

V 2 2

O

t 4 t t 5 6 V 1 VD

1

t V 2 ON

VD 2

单相半桥电压型逆变电路工作波形

全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo的矩形波 uo展开成傅里叶级数,得

4Ud?11??sin?t?sin3?t?sin5?t??? uo???35?其中基波幅值Uo1m和基波有效值Uo1分别为

Uo1m?4Ud??1.27UdUo1?22Ud??0.9Ud

上述

LLC谐振半桥的主电路设计指导

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

LLC谐振半桥的主电路设计指导

近年来,LLC谐振半桥因为成本低、效率高而且结构简单,获得了电源工程师的广泛认可,从而迅速在中低功率(100W-2000W)范围内得到了广泛应用。

关于LLC谐振半桥的理论分析,各类论文已经介绍的比较详细,因此在这里不再赘述,仅仅把主电路参数的设计过程,以及设计中用到的主要公式分列如下。

一、所需的初始设计条件

LLC变换器仅适用于输入电压波动范围比较窄的高压直流输入场合,因此前级一般有PFC级,且LLC电路不适合用于需要长保持时间的场合。设计时,所需的初始限定条件主要是:

1、 输入额定直流电压Vin?e、最低工作直流电压Vin?min、最高直流输入电压Vin?max; 2、 额定输出电压Vo、额定输出电流Io; 3、 预期的谐振频率fr;

4、 输出线路压降(含二极管压降、PCB走线以及电缆压降)Vd;

5、 K值(K值的大小将影响到工作频率范围,并对效率略有影响。一般取4-7之间); 6、 变压器磁芯截面积Ae与工作磁感应强度Bmax,变压器原边匝数NP,副边匝数NS;

二、设计计算过程

1、 计算变比

一般来说,为了使电源达到比较高的变换效率,我们会把满载工作点设置在谐振频率位置,或略有轻微调整

LLC谐振半桥的主电路设计指导

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

LLC谐振半桥的主电路设计指导

近年来,LLC谐振半桥因为成本低、效率高而且结构简单,获得了电源工程师的广泛认可,从而迅速在中低功率(100W-2000W)范围内得到了广泛应用。

关于LLC谐振半桥的理论分析,各类论文已经介绍的比较详细,因此在这里不再赘述,仅仅把主电路参数的设计过程,以及设计中用到的主要公式分列如下。

一、所需的初始设计条件

LLC变换器仅适用于输入电压波动范围比较窄的高压直流输入场合,因此前级一般有PFC级,且LLC电路不适合用于需要长保持时间的场合。设计时,所需的初始限定条件主要是:

1、 输入额定直流电压Vin?e、最低工作直流电压Vin?min、最高直流输入电压Vin?max; 2、 额定输出电压Vo、额定输出电流Io; 3、 预期的谐振频率fr;

4、 输出线路压降(含二极管压降、PCB走线以及电缆压降)Vd;

5、 K值(K值的大小将影响到工作频率范围,并对效率略有影响。一般取4-7之间); 6、 变压器磁芯截面积Ae与工作磁感应强度Bmax,变压器原边匝数NP,副边匝数NS;

二、设计计算过程

1、 计算变比

一般来说,为了使电源达到比较高的变换效率,我们会把满载工作点设置在谐振频率位置,或略有轻微调整

LLC原理 - 图文

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

LLC工作原理

要了解LLC,就要先了解软开关。对于普通的拓扑而言,在开关管开关时,MOSFET的D-S间的电压与电流产生交叠,因此产生开关损耗。如图所示。

为了减小开关时的交叠,人们提出了零电流开关(ZCS)和零电压开关(ZVS)两种软开关的方法。对于ZCS:使开关管的电流在开通时保持在零,在关断前使电流降到零。对于ZVS:使开关管的电压在开通前降到零,在关断时保持为零。

最早的软开关技术是采用有损缓冲电路来实现。从能量的角度来看,它是将开关损耗转移到缓冲电路中消耗掉,从而改善开关

管的工作条件。这种方法对变换器的效率没有提高,甚至会使效率降低。目前所研究的软开关技术不再采用有损缓冲电路,这种技术真正减小了开关损耗,而不是损耗的转移,这就是谐振技术。而谐振变换器又分为全谐振变换器,准谐振变换器,零开关PWM变换器和零转换PWM变换器。全谐振变换器的谐振元件一直谐振工作,而准谐振变换器的谐振元件只参与能量变换的某一个阶段,不是全程参与。零开关PWM变换器是在准谐振的基础上加入一个辅助开关管,来控制谐振元件的谐振过程。零转换PWM变换器的辅助谐振电路只是在开关管开关时工作一段时间,其它时间则停止工作。

全谐振变换器主要由开关网络和谐振槽路组成

LLC谐振电路设计

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

LLC谐振电路设计

LLC半桥谐振电路中,根据这个谐振电容的不同联结方式,典型LLC谐振电路有两种连接方式,如图1-1所示。不同之处在于LLC谐振腔的连接,左图采用单谐振电容(Cr),其输入电流纹波和电流有效值较高,但布线简单,成本相对较低;右图采用分体谐振电容(C1,C2),其输入电流纹波和电流有效值较低,C1和C2上分别只流过一半的有效值电流,且电容量仅为左图单谐振电容的一半。

图1-1典型LLC谐振电路

LLC谐振变换的直流特性分为零电压工作区和零电流工作区。这种变换有两个谐振频率。一个是Lr和Cr的谐振点,另外一个谐振点由Lm,Cr以及负载条件决定。负载加重,谐振频率将会升高。这两个谐振点的计算公式如下:

fr1?1

2?LrCr(1-1)

fr1?1

2??Lr?Lm?Cr(1-2)

考虑到尽可能提高效率,设计电路时需把工作频率设定在fr1附近。其中,fr1为Cr,Lr串联谐振腔的谐振频率。当输入电压下降时,可以通过降低工作频率获得较大的增益。通过选择合适的谐振参数,可以让LLC谐振变换无论是负载变化或是输入电压变化都能工作在零电压工作区。

总体来说LLC半桥谐振电路的开关动作和半桥电路无异,但是由于谐振腔的加入,LLC半桥谐振电路

单相全桥逆变电路讲解

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

单相全桥逆变电路讲解

首先介绍学习硬件电路的重要性和必要性 重要性:找工作面试、考研面试和在以后工作 重要性 中都是很好的基础,起到良好的作用。 以此为基点,展开,引用李泽元 李泽元老师的话: 李泽元 “现在知识面很宽很大,不可能面面具到,且 搞的人很多,要找一个自已感兴趣的点,深入 研究,动手实践做实验,在实验中发现问题和 解决问题,然后再扩展。”

首先介绍学习硬件电路的重要性和必要性 必要性:这个电路的选取有代表性,由于桥式 必要性 逆变电源在选择功率开关器件耐压要求可以稍 低,并有较高的功率输出,现通常采用全桥式 逆变电路来实现较大功率输出。单相三相全桥 逆变电路应用范围广(各种开关电源如电源车 载电源、航空电源、电信电源等;各种电机调 速如空调、电焊机等;变频器;牵引传动等领 域)。

整体安排一、基础知识讲解(计划两至三个半天) 基础知识讲解(计划两至三个半天)

开关管(MOSFET和IGBT)知识、电阻 电容等基本知识、芯片 管脚功能(IR2110 、 SG3525、LM339、 MUR8100 、IRFP450 )

主电路、控制电路的工作原理、参数的 确定

整体安排二、PROTEL介绍 、原理图绘制(计划三个半天) 介绍 原理图绘制(计划三个

全桥逆变电路双极性SPWM调制电路

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

单相全桥逆变电路双极性SPWM调制电路 1逆变主电路设计

1.1逆变电路原理及相关概念

逆变与整流(Rectifier)是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本文只讨论单相全桥逆变电路。

1.2单相全桥逆变电路设计

单相全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对交替各导通180,其输出矩形波的幅值是半桥电路的两倍。全桥电路在带阻感负载时还可以采用移相调压的方式输出脉冲宽度可调的矩形波。

图 1单相全桥逆变电路

1.3建立单项全桥逆变电路的Simulink的仿真模型

1.3.1模型假设

1)所有开关器件都是理想

MOSFET单相全桥无源逆变电路

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

电力电子技术课程设计说明书

MOSFET单相桥式无源逆变电路设计

(纯电阻负载)

院 、 部: 电气与信息工程学院 学生姓名: 指导教师: 王翠 职称 副教授 专 业: 自动化 班 级: 自本1004班 完成时间: 2013-5-24

摘 要

本次基于MOSFET的单相桥式无源逆变电路的课程设计,主要涉及MOSFET的工作原理、全桥的工作特性和无源逆变的性能。本次所设计的单相全桥逆变电路采用MOSFET作为开关器件,将直流电压Ud 逆变为频率为1KHZ的方波电压,并将它加到纯电阻负载两端。

本次课程设计的原理图仿真是基于MATLZB的SIMULINK,由于MATLAB软件中电源等器件均为理想器件,使得仿真电路相对较为简便,不影响结果输出。设计主要是对电阻负载输出电流、电压与器件MOSFET输出电压的波形仿真。

关键词:单相;全桥;无源;逆变;MOSFET;

目 录

1 MOSFET的介绍及工作原理 .......................................... 4 2 电压型无源逆变电路的特点及主要类型 .........