圆最值模型汇总
“圆最值模型汇总”相关的资料有哪些?“圆最值模型汇总”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆最值模型汇总”相关范文大全或资料大全,欢迎大家分享。
动态最值问题 - 圆内最值问题
“一师一优课”
《动态最值问题——圆内最值问题》教学设计
西安爱知中学 郭晏铖
【学情分析】
在运动变化中求最值的问题灵活性较强,涉及的知识面较广,对学生思维能力要求较高,经常令学生束手无策。因此如何正确快速的求解成为学生学习中的难点。本节课前,学生已经学习了圆的基本知识,以及点和圆、直线和圆的位置关系。四班的同学在年级中属中等偏上水平,对于基本知识的学习掌握的较快,但缺乏应用的灵活性。与圆有关的最值问题可以变零散的知识为学生整体的认识,变重复枯燥的学习为新奇有趣的探索,在训练学生逻辑思维的同时,还能培养学生的探索能力 【教学方法】
对于圆中求最值问题,学生经常感到无从下手,处理此类题目首先要明确题目中运动的对象,然后就是根据按照题目要求作出运动过程中某一时刻的图象。现在学生普遍欠缺作图能力,因此我在题目的设置上也遵循由易到难的原则,从给出图形到简单作图再到复杂作图,让学生在这个过程中体会作图的重要性。
任何运动变化问题中总隐含着定量和不变关系,这也是解决这类问题的关键。在设计时我也注重设计情境,引导学生自己挖掘题目中的信息,找到这些关键点。从例1中的定量过渡到不变的位置关系再到不变的数量关系,剥茧抽丝,层层递进,从而体会探究的乐趣。
圆最值问题题型归纳
圆中最值问题
类型一 圆上一点到直线距离的最值问题
22(x?3)?y?1上任一点,则PQ的最小例1 已知P为直线y=x+1上任一点,Q为圆C:
值为 .
变题1:已知A(0,1),B(2,3),Q为圆C(x?3)2?y2?1上任一点,则SVQAB的最小值为 .
变题2:由直线y=x+1上一点向圆C:(x?3)2?y2?1引切线,则切线长的最小值为
变题3:已知P为直线y=x+1上一动点,过P作圆C:(x?3)2?y2?1的切线PA,PB,A、B为切点,则当PC= 时,?APB最大.
变题4:已知P为直线y=x+1上一动点,过P作圆C:(x?3)2?y2?1的切线PA,PB,A、B为切点,则四边形PACB面积的最小值为 .
例2已知圆C:x2?y2?2x?4y?3?0,从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有PM=PO,求使得PM取得最小值的点P坐标.
y C O x
类型二 利用圆的参数方程求最值(或几何意义)
例3若实数x、y满足x2?y2?2x?4y?0,求x-2y的最大值. 如在上例中,改为求
y?1,(
圆中最值模型的应用
一个最值模型在解题中的运用
模型
如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则PA是点P到⊙O上的点的最短距离.
证明 如图2,在⊙O上任取一点C(不为点A、B),连结PC、OC. ∵PO
PO=PA+OA,OA=OC, ∴PA
∴PA是点P到⊙O上的点的最短距离,
结论
圆外一点到圆上各点的最短距离是:这点到连结这点与圆心连线与圆交点之间的距离. 这一结论可以在解题中加以应用,以提高解题效率.
一、图中有图可直接应用
例1.(2014三明中考题)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直
⌒上的一个动点,连结AP,则AP的最小值是________. 径的半圆交AB于点D,P是CD
解析 点A为定点,点P为动点且在圆弧上运动,显然这不同于我们常见的可利用垂线段最短的知识来解决的“一定一动型”最值问题.联想到我们所探究的模型,可知,当AP所在直线过圆心时,AP值最小. 如图4,在Rt△ACO中,
AO=AC2?OC2?5 ∴AP=AO-OP=5-1. 例2.(2014无锡中考题)如图5,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD及⊙A和⊙B上的动点,则PE
圆中的最值问题
拔高专题 圆中的最值问题
一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的 对称 点,对称点与另一点的连线与直线L的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题
例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。
解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,
∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32.
【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条
建立模型巧求最值
建立模型,巧求最值
引言:最值问题是一类综合性较强的问题,而线段和(差)问题,解决这类问题的基本依据有: (1) “两点之间线段最短”,(2) “垂线段最短”,(3) “三角形两边之差小于第三边”。
一、常用几何模型:
Ⅰ.“将军饮马”模型:
(1)、在一条直线m上,求一点P,使PA+PB最小;
(1)点A、B在直线m两侧:(2)、点A、B在直线m同侧。
APPBA,B在同侧A'A,B在异侧BA
A、A?关于直线m的对称。
2、在直线m、
AAPPA'PAn上分别找两点P、Q,使PA+PQ+QB最
BQBQ建立模型巧求最值第 1 页 共 15 页 QBA,B在两直线外侧B'B'都在内侧一内一外小。
又区分为(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧: Ⅱ.台球两次碰壁模型 已知点A位于直线m,n 的内侧,在直线m、n分别上求点P、Q点, 使PA+PQ+QA周长最短.
变式:已知点A、B位于直线m,n 的内侧,在直
线m、n分别上求点D、E点,使得围成的四边形ADEB周长最短. 小例:?AOB?45
?建立模型巧求最值第 2 页 共 15 页
点P在?AOB内,且OP?10,
隐圆及几何最值训练题
隐圆及几何最值训练题
一、利用“直径是最长的弦”求最值
1.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为( ) .
2.如图,在△ABC中,∠ABC=90°,AB=6,BC=8,D为AC的中点,过点D作DE⊥DF,DE、DF分别交射线AB、AC于点E、F,则EF的最小值为 .
A
ED BCF
二、利用“定点定长存隐圆”求最值
3.(2012年武汉市中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.
y
B
CxOA
4.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是.
5.正方形ABCD中,BC=4,E,F分别为射线BC,CD上两个动点,且满足BE=CF,设AEF,BF交于G,则DG的最小值为(
隐圆及几何最值训练题
隐圆及几何最值训练题
一、利用“直径是最长的弦”求最值
1.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为( ) .
2.如图,在△ABC中,∠ABC=90°,AB=6,BC=8,D为AC的中点,过点D作DE⊥DF,DE、DF分别交射线AB、AC于点E、F,则EF的最小值为 .
A
ED BCF
二、利用“定点定长存隐圆”求最值
3.(2012年武汉市中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.
y
B
CxOA
4.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是.
5.正方形ABCD中,BC=4,E,F分别为射线BC,CD上两个动点,且满足BE=CF,设AEF,BF交于G,则DG的最小值为(
初中中考数学几何圆最值试卷
2016年03月30日LU的初中中考几何圆最值组卷
一.选择题(共10小题) 1.(2015?武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是( )
A.2﹣ B.C. D.﹣1 2.(2011?鄂州校级模拟)如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,
+1
则PC所能达到的最大值为( )
A. B. C.5 D.6 3.设P到等边△ABC两顶点A、B的距离分别为4和3,则PC所能达到的最大值是( ) A. B.5 C.7 D.8 4.(2014?洪山区一模)如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是( )
A.
5.(2013?武汉模拟)如图,点A是半径为3的⊙O内一定点,已知OA=一点,当∠OPA取最大值时,则sin∠OPA=( )
,P为⊙O上
B.
C.
D.
第1页(共8页)
A.
B.
C.
D.
6.(2015?厦门校级一模)已知点A在半径为3的⊙O内,OA等于1,点B是⊙O上一点,连接AB,当∠OBA取最大值时,AB长度
“与圆有关的最值问题”教案(最新)
“与圆有关的最值问题”教学案例 余浩平
教学背景: 本节课是与圆有关的一节复习课,由于在初中学习中接触过圆的一些基本知识,因而课前安排了两道有关圆的最值问题让学生练,为后面的教学奠定了基础。在随后的教学中,采取变式教学、一题多解、自主探索的教学方式,培养学生研究性学习。
教学目标:
从学生的实际出发,依据数学思维规律,提出恰当的富于启发性的问题,去启迪和引导学生积极思维,同时采用多种方法,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
重点与难点:
学生通过观察、分析、猜想、类比等思想方法主动地发现问题和解决问题。
教学过程: 一、 引入新课 练习:
已知圆x2?y2?8x?2y?12?0内一点A(3,0),求经过点A的最长弦和最短弦所在的直线方程。
二、 新课
例: 已知圆的方程x2?y2?2及一点P(2,4),求圆上的动点与点P连线斜率
的最值?
题变: 将上面例题中的点P(2,4)改为P(0,4),则圆上的动点与点P连线斜率的
最值是否存在?若存在求出
专题24--直线与圆的最值问题
专题24--直线与圆的最值问题
主干知识整合
直线与圆中的最值问题主要包含两个方面
1.参量的取值范围
由直线和圆的位置关系或几何特征,引起的参量如k,b,r的值变化.此类问题主要是根据几何特征建立关于参量的不等式或函数.
2.长度和面积的最值
由于直线或圆的运动,引起的长度或面积的值变化.此类问题主要是建立关于参数如k或b,r的函数,运用函数或基本不等式求最值.
探究点一 有关长度的最小值
直线与圆中有关长度的问题主要包括直线被坐标轴截得的长度、弦长、切线长等.其中弦长、切线长都可以与半径构造直角三角形来求解.
例1 (1)如图24-1,已知圆x2+y2=1的一条切线与x轴、y轴分别交于点A、B,则线段AB长度的最小值为________.2
22 (2)直线2ax+by=1与圆x+y=1相交于A,B两点
(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),
则点P(a,b)与点(0,1)之间距离的最大值为________. 2+1
探究点二 有关面积的最值问题
圆形成的多边形及动圆的面积.
例2 已知圆C通过不同的三点P(m,0)、Q(2,0)、R(0,1),且CP率为-1.
(1)试求⊙C的方程;
x2+y2+x+5y-6=0
(2)过原点O作两条互相