小学六年级数学上册列方程解应用题
“小学六年级数学上册列方程解应用题”相关的资料有哪些?“小学六年级数学上册列方程解应用题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学六年级数学上册列方程解应用题”相关范文大全或资料大全,欢迎大家分享。
小学六年级数学列方程解应用题练习修改
列方程解应用题综合练习题(50道)
1、 运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能运完?
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
6、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。甲每小时行走5千米,乙每小时行走多少千米?
7、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元
8、一批煤,每天烧3.6吨,可以烧30天,如果每天烧2.4吨,可以烧多少天?
9、 一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?
10、果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?
11、王阿姨买空11个暖瓶,付了200元,找回35元,每个
小学六年级数学列方程解应用题练习修改
列方程解应用题综合练习题(50道)
1、 运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能运完?
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
6、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。甲每小时行走5千米,乙每小时行走多少千米?
7、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元
8、一批煤,每天烧3.6吨,可以烧30天,如果每天烧2.4吨,可以烧多少天?
9、 一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?
10、果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?
11、王阿姨买空11个暖瓶,付了200元,找回35元,每个
小学六年级列方程解应用题方法归纳
小学六年级列方程解应用题专项复习
1 列方程解应用题的意义
★ 正向思维,把未知量当已知量。
2、方法总结.列方程解应用题的步骤是:
(1)审题:弄清题意,确定已知量、未知量及它们的关系; (2)设元:选择适当未知数,用字母表示;
(3)列代数式:根据条件,用含所设未知数的代数式表示其他未知量; (4)列方程:利用列代数式时未用过的等量关系,列出方程; (5)解方程:正确运用等式的性质,求出方程的解; (6)检验并答题。
3列方程解应用题的方法
★ 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
★ 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。 4列方程解应用题的范围
a一般应用题; b和倍、差倍问题; c几何形体的周长、面积、体积计算; d 分数、百分数应用题; e 比和比例应用题。 5.常见的一般应用题
一、以总量为
六年级列方程解应用题复习题
篇一:六年级列方程解应用题练习题Word 文档
六年级列方程解决问题练习题
姓名 成绩 1、将一个棱长6分米的立方体钢材熔铸成一个底面积是48平方分米的圆锥形模具,这个模具的高是多少分米?
2、某建筑队修筑一段公路,原计划每天修56米,15天完成,实际上每天多修4米,实际用了几天?
3、甲筐苹果的重量是乙筐的3倍。如果从甲筐取出20千克放入乙筐,那么两筐苹果的重量就相等。两筐原来各有苹果多少千克?
4、师徒二人共加工208个零件,师傅加工的零件数比徒弟的2倍还多4个。师傅加工了多少个零件?
5、新江县新开通的公共汽车实行两种票制,普通车票每张2元,通票每张5元。有一天售票员统计车票收入时,发现这天共有乘客880人,通票收入比普通车票收入多1740元。问这天购买通票的有多少人?
6、苹果、梨、桔子三种水果共100千克,其中苹果的重量是梨的3倍,桔子的重量比梨的一半少8千克,其中有桔子多少千克?
7.一辆汽车,从甲地到乙地.如果每小时行45千米,就要晚0.5小时到达;如果每小时行50千米,就可提前0.5小时到达.问甲乙两地的距离及原计划行驶的时间.
8.小红、小乔买了一本习题集,利用暑假做习题.小红做了364道,小乔做了228道后剩下的题目正好是小红剩下的2倍,
六年级数学列方程解稍复杂的分数应用题1
教学目标
1.理解稍复杂的已知一个数的几分之几是多少,求这个数的应用题的数量关系.
2.会列方程解答这类应用题.
3.培养学生分析推理能力.
教学重点
分析应用题的数量关系.
教学难点
找应用题的等量关系.
教学过程
一、复习旧知.
小红买来一袋大米重40千克,吃了 ,还剩多少千克?
1.画图理解题意
2.指名叙述解答过程.
3.列式解答40-40× 40×(1- )
教师小结:解答分数应用题,关键是找准单位“1”,如果单位“1”是已知的,求它的几分之几是多少,就可以根据一个数乘分数的意义直接用乘法计算.
二、探究新知.
(一)变式引出例6
例6.小红买来一袋大米,吃了 ,还剩15千克买来大米多少千克?
1.读题
2.画线段图
3.分析数量关系,列方程.
4.教师提问:题中表示等量关系的三个量是什么?可以怎样列方程?
(1)解:设买来大米 千克.
买来大米的重量-吃了的重量=剩下的重量
(2)买来大米的重量×剩下几分之几=剩下的重量
5.学生自己解方程并检验.
答:这袋大米重40千克.
(
小学列方程解应用题
列方程解应用题
1 列方程解答应用题的步骤
★ 弄清题意,确定未知数并用x表示; ★ 找出题中的数量之间的相等关系; ★ 列方程,解方程;
★ 检查或验算,写出答案。 2列方程解应用题的方法
★ 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
★ 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。 3列方程解应用题的范围
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算; d 分数、百分数应用题; 5.常见的一般应用题 一、以总量为等量关系建立方程
例题 两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?
解法一: 快车 4小时行的+慢车4小时行的=总路程 解法二:(X+60)×4=536 解设:快车小时行X千米
六年级知识点复习列方程解应用题
复习要点
课题:应用题(3)——列方程解应用题
复习内容 知 识 点
概 述 列方程解应用题的特点是用字母表示未知量,根据题目中数量间的相等关系列出方程,再解出来。列方程解应用题是简易方程的实际应用,也是一种重要的数学方法;能拓展思路,化难为易,提高解题的灵活性。
解题步骤 1、弄清题意,找出所求的未知数并用x表示2、根据题意找出等量关系,列出方程3、解方程4、检验、写答案
根 据 题 意 找 等 量 关 系 的 常 用 方法 1、根据常见的数量关系式,建立等量关系
2、根据已学过的计算公式,
3、根据题中的重点叙述句从整体上确定基本的等量关系
4、利用线段图、列表法等方法分析数量关系,建立等量关系
思考方法 列方程解应用题是,一般采用顺向思维,即根据题目的叙述顺序,把位置量用x表示暂时看作已知,同已知数量一样参与列式运算。
七年级数学上册列方程解应用题专题分类
七年级数学上册列方程解应用题专题分类
销售问题
1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?
2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?
3、某种商品的进价是1000元,售价为1500元, 由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。
4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。则进价为每件多少元?
5、某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润不低于5%,则至多可打多少折? 6、某种商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了还是赔了?
7.某商店的冰箱先按原价提高40% ,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚了270元,试问冰箱的原标价是多少元?现售价是多少元?
工程问题
列方程解应用题
列方程解应用题
练习1 从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点.已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?
练习2 甲、乙两车从A、B两地于上午8点钟同时出发,相向而行,已知甲的速度比乙快2千米/时,到上午10点钟,两车还相距36千米,又过两个小时后两车相距36千米.求A、B两地的距离与两车的速度.
练习3 一个自行车队进行训练,训练时所有队员都以35km/h的速度前进.突然,1号队员以45km/h的速度独自前行,行进10km/h后掉转车头,仍以45km/h的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员从新会合,经过了多长时间?
练习4 甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米/时,这列火车有多长?
- 1 -
练习5 甲、乙二人绕学校操场和环形跑道跑步,甲80秒跑一圈,乙48秒跑一圈,若俩人同时同向
六年级奥数 - 第五讲 列方程解应用题
六年级奥数——第五讲 列方程解应用题
第五讲 列方程解应用题
【知识要点】
1、应用题也是常见的典型应用题。列方程解应用题的主要特征是未知数和已知数同样都是运算对象,通过找出“未知”与“已知”之间的等量关系,列出方程,使问题得以解决。列方程解应用题往往比算术方法易于思考。
2、列方程解应用题的一般步骤是:审题;设未知数;找出等量关系列方程;解方程;检验作答。
【例题精讲】
例1:三牌楼小学六(1)班有56人,六(2)班有30人。从六(1)班调几人到六(2)班,可使六(2)班的人数比六(1)班的2倍少10人? 【思路点拨】
可以设从从六(1)班调x人到六(2)班,可使六(2)班的人数比六(1)班的2倍少10人。调动后六(1)班(56-x)人,六(2)班(30+x)人。现在六(1)班人数=六(2)班人数×2+10。
模仿练习:有两根绳子,长绳子比短绳子的3倍多20米,如果长绳子用去25米,短绳子用去10米,那么长绳子是短绳子的4倍。求长绳子和短绳子原来各多少米?
例2:用一根绳子测量井的深度,如果把绳子3折,井外多2米;如果把绳子4折,还差1米不到井口。井深多少米?绳子长多少米? 【思路点拨】