线性规划实验报告心得
“线性规划实验报告心得”相关的资料有哪些?“线性规划实验报告心得”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性规划实验报告心得”相关范文大全或资料大全,欢迎大家分享。
线性规划实验报告
实验报告
实验内容及要求:
内容:某公司有四个农场,每个农场的耕地作物需要用水灌溉,因灌溉条件限制,农
场的最大水资源供应量有一定限制,各农场的总耕地面积与最大水资源供应量如表1-1所示。该地区适合种植的农作物有棉花、玉米和高粱,三种农作物每种作物每单位种植面积的净收入和耗水量以及每种作物最大允许种植面积如表1-2所示。由于水资源短,公司统一调配水资源,为了保持公正,规定每个农场受灌溉面积占农场总耕地面积的比例相同,公司管理层面临的决策问题还是如何确定各农场种植各种作物的面积,使得在满足以上各种限制的条件下,公司总收入最大。
表1-1
耕地面积(亩) 4000 6000 5000 4500 最大水资源供应量(吨) 农场 1 2 3 4
6000 9000 5500 5000
表1-2
作物 单位种植面积收入(元) 800 600 450 单位面积耗水量(吨) 2 1.5 1 最大允许种植面积(亩) 6000 5500 5000 棉花 玉米 高粱
实验过程分析:
要想得到该问题的最优解,我们将棉花标记为1,玉米标记为2,高粱标记为3.所以设置变量为:
棉花 玉米 高粱
农场1 X11 X12 X13 农场2 X21 X22
运筹学线性规划实验报告
《管理运筹学》实验报告
实验日期: 2016年 04月 21日 —— 2016 年 05 月 18 日 班级 2014级04班 姓名 杨艺玲 学号 实验 管理运筹学问题的计算机求解 名称 实验目的: 2014190456 通过实验学生应该熟练掌握“管理运筹学3.0”软件的使用,并能利用“管理运筹学3.0”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。 实验所用软件及版本: 管理运筹学3.0 实验过程:(含基本步骤及异常情况记录等) 一、实验步骤(以P31页 习题1 为例) 1.打开软件“管理运筹学3.0” 2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面
3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤” 、“≥”或“=”,如图二所示,最后点击解决
1
4.注意事项: (1) 输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。 (2) 输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示
2
5.输出结果如下
5.课后习题: 一、P31习题1
数学建模实验报告3 线性规划与整数规划、
数学建模与实验课程 实验报告
实验名称 三、线性规划与整数规划 实验地点 日期 2014-10-28 姓名 班级 学号 成绩
【实验目的及意义】
[1] 学习最优化技术和基本原理,了解最优化问题的分类; [2] 掌握规划的建模技巧和求解方法; [3] 学习灵敏度分析问题的思维方法;
[4] 熟悉MATLAB软件求解规划模型的基本命令;
[5] 通过范例学习,熟悉建立规划模型的基本要素和求解方法。
通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令,并进行灵敏度分析。解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。 【实验要求与任务】
根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型的求解(程序)—结论)
A组
高校资金投资问题
高校现有一笔资金10
(一)线性规划
(一)线性规划
案例分析1
例1.10 飞乐公司经营一个回收中心,专门从事用三种废弃原材料C、P、H混合调出三种不同规格的产品ABD。根据混合时候各种材料的比例,可将该产品分为不同的等级(参照表1.12)。尽管在混合各种等级产品时允许一定的机动性,但每一等级产品中各种材料的最大值和最小值必须符合下面质量标准的规定(最大值和最小值是根据该材料的重量在该等级产品总重量中的比例来确定的)。在两种较高等级的产品中,有一种特定材料的比例是固定的。已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价,分别见表1.12和表1.13,问该厂应如何安排生产,使利润收入为最大? 表1.12
产品名称 A B D
规格要求 原材料C不少于50% 原材料P不多于25% 原材料C不少于25% 原材料P不多于50%
不限
单价(元/kg)
50 35 25
回收中心可以从一些渠道定期收集到所需的固体废弃物,因此,可以获得维持稳定作业的处理量。表1.13给出了中心每天可以收集到每种材料的数量和原材料单价。
表1.13
原材料名称
C P H
每天最多供应量(kg)
100 100 60
单价(元/kg)
65 25 35
飞乐公司是绿地组织的全资公司,绿地组织
运筹学实验报告(一)线性规划问题的计算机求解(1)
运筹学实验报告
实验课程:运筹学 实验日期: 任课教师:王 挺 班级:11级应数二班 姓名:刘兴成 学号:0201110237 一、实验名称: 简单线性规划模型的求解与Lingo软件的初步使用 二、实验目的: 了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。熟悉Lingo软件在运筹学模型求解中的作用,增强自身的动手能力,提高实际应用能力 三、实验要求: 1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令 2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。 4、能给出最优解和最优值; 5、能给出实际问题的数学模型,并利用lingo求出最优解 四、报告正文(文挡,数据,模型,程序,图形): 1.在Lingo中求解下面的线性规划数学模型; maxz?2x1?5x2maxz?2x1?5x2?x1?x3?4?x1?4?x?x?3?x?3 (1) (2) ?24?2s..t?s..t?x?2x?x?825?1?x1?2x2?8???x1,x2?0?
运筹学实验报告(一)线性规划问题的计算机求解 (1)
运筹学实验报告
实验课程:运筹学 实验日期: 任课教师:王 挺 班级:11级应数二班 姓名:刘兴成 学号:0201110237 一、实验名称: 简单线性规划模型的求解与Lingo软件的初步使用 二、实验目的: 了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。熟悉Lingo软件在运筹学模型求解中的作用,增强自身的动手能力,提高实际应用能力 三、实验要求: 1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令 2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。 4、能给出最优解和最优值; 5、能给出实际问题的数学模型,并利用lingo求出最优解 四、报告正文(文挡,数据,模型,程序,图形): 1.在Lingo中求解下面的线性规划数学模型; maxz?2x1?5x2maxz?2x1?5x2?x1?x3?4?x1?4?x?x?3?x?3 (1) (2) ?24?2s..t?s..t?x?2x?x?825?1?x1?2x2?8???x1,x2?0?
线性规划的对偶
第四章 线性规划的对偶理论
一、填空题
1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的
线性规划问题与之对应,反之亦然。
2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。
5.若原问题可行,但目标函数无界,则对偶问题不可行。
6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。
﹡-
7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB1。
﹡﹡﹡﹡
8.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX= Yb。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。
﹡﹡﹡
10.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX=Y*b。
11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。 12.影子价格实际上是与原问题各约束条
2015届线性规划
2016高三数学 不等式与线性规划 姓名:________ 2015.11.10
........
x≥2,??139
1.实数x,y满足?x-2y+4≥0,若z=kx+y的最大值为13,则实数k=( ) A.2 B. C. D.5
24
??2x-y-4≤0,y≥-1,??
2.变量x,y满足?x-y≥2,
??3x+y≤14,
若使z=ax+y取得最大值的最优解有无穷多个,则a的取值集合是____.
14
3.下列命题正确的是( ) A.若x≠kπ,k∈Z,则sin2x+2≥4 B.若a<0,则a+≥-4
sinxa
ba
C.若a>0,b>0,则lg a+lg b≥2lg a·lg b D.若a<0,b<0,则+≥2
ab
4.函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2-x)>0的解集为_____. x+y≥0,??
5.在平面直角坐标系xOy中,记不等式组?x-y≤0,
??y≤2
??u=x+y,
所表示的平面区域为D.在映射T:?
?v=x-y?
的作用下,区域D内的点(x,y)对应的象为点(u,v),则由点(u,v)所形成的平面区域的面积为_____.
6.设对任意实数x>0,y>0,
线性规划的对偶
第四章 线性规划的对偶理论
一、填空题
1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的
线性规划问题与之对应,反之亦然。
2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。
5.若原问题可行,但目标函数无界,则对偶问题不可行。
6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。
﹡-
7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB1。
﹡﹡﹡﹡
8.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX= Yb。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。
﹡﹡﹡
10.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX=Y*b。
11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。 12.影子价格实际上是与原问题各约束条
线性规划模型研究
线性规划模型研究
摘要:探讨线性规划在生活中的应用。方法:了解线性规划法及其特点;分析生活中某些问题适合利用线性规划求解的缘由;求解出所需值,同时观察其现实意义。结果:由于生活中很多关于利益最大化、成本最小化的问题,所以线性规划在生活中应用很广泛。而且线性规划求解方法多样;求出的结果能很好反映现实问题。结论:线性规划模型在生活中应用广泛。 关键词:线性规划;生活问题;求解相关值
Linear programming model
Abstract: discuss the application of linear programming in life. Method: to investigate the linear programming method and its characteristics; Analysis of some problems in the life is suitable for using the linear programming to solve the reason; Solving the required value and observe its realistic significance.