高中二次函数含参数的讨论

“高中二次函数含参数的讨论”相关的资料有哪些?“高中二次函数含参数的讨论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中二次函数含参数的讨论”相关范文大全或资料大全,欢迎大家分享。

含参数二次函数分类讨论的方法hai

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

二次函数求最值参数分类讨论的方法

分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题.

一般地,对于二次函数y=a(x?m)2+n,x∈[t,s]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。

t+s 2ts ② ① ③ ④ ①表示对称轴在区间[t,s]的左侧,②表示对称轴在区间[t,s]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t,s]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。

含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论

题型一:“动轴定区间”型的二次函数最值 例1、求函数f(x)?x2?2ax?3在x?[0,4]上的最值。

分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。

解:f(x)?x?2ax?3?(x?a)?3?a

∴此函数图像开口向上,对称轴x=a

①、当a<0时,0

初中二次函数考题规律

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

初中二次函数考题规律

例1 已知以x为自变量的二次函数y=(m-2)x2+m2-m-2图像经过原点,则m的值是

例2 如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数y=kx2+bx-1的图像大致是( )

a b c d

例3 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=3(5),求这条抛物线的解析式。例4 已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-32 (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标。例5 已知⊿ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A的坐标为(—1,0),求 (1)B,C,D三点的坐标; (2)抛物线经过B,C,D三点,求它的解析式; (3)过点D作DE∥AB交过B,C,D三点的抛物线于E,求DE的长。例6 把抛物线y=3x2先向上平移2个单位,再

初中二次函数知识点及经典题型

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

二次函数的解析式

二次函数的解析式有三种形式:

(1)一般 一般式:y?ax2?bx?c(a,b,c是常数,a?0)

(2)两根 当抛物线y?ax2?bx?c与x轴有交点时,即对应二次好方程

ax2?bx?c?0有实根x1和x2存在时,根据二次三项式的分解因式ax2?bx?c?a(x?x1)(x?x2),二次函数y?ax2?bx?c可转化为两根式

y?a(x?x1)(x?x2)。如果没有交点,则不能这样表示。

a 的绝对值越大,抛物线的开口越小。

(3) 顶点式:y?a(x?h)2?k(a,h,k是常数,a?0)

知识点八、二次函数的最值

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小

4ac?b2b值),即当x??时,y最值?。

4a2a如果自变量的取值范围是x1?x?x2,那么,首先要看?围x1?x?x2内,若在此范围内,则当x=?b时,y最值2ab是否在自变量取值范2a4ac?b2?;若不在此范围

4a内,则需要考虑函数在x1?x?x2范围内的增减性,如果在此范围内,y随x的增大而

22增大,则当x?x2时,y最大?ax2?bx2?c,当x?x1时,y最小?ax1?bx1?c;如2果在此范围内,y

汉中二次加压供水设备

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

汉中二次加压供水设备 供水设备

通常我们所说的二次供水设备,一般指的是无负压变频供水设备,也叫变频无负压供水设备。传统的供水方式离不开蓄水池,蓄水池中的水一般自来水管供给,这样有压力的水进入水池后变成零,造成大量的能源白白浪费。

而无负压供水设备是一种理想的节能供水设备,它是一种能直接与自来水管网连接,对自来水管网不会产生任何副作用的二次给水设备,在市政管网压力的基础上直接叠压供水,节约能源,并且还具有全封闭、无污染、占地量小、安装快捷、运行可靠、维护方便等诸多优点。

设备原理二次

供水设备,一般设在地上或地下室。有自来水的单位,运用该设备可以调度高峰用水量,增加水压,能在高峰用水时,满足大面积用水和高楼层用水。没自来水的单位、工厂或村庄,只需将该设备接通水源电源,即可得到安稳的水量水压,满足用水需要。二次供水设备由气压罐、水泵及电控系统三有些组成,其超卓利益是,不需缔造水塔,出资小、占地少,组织活络,建成投产快。选用水气自动调度、自动作业、节能与自来水自动并网,停电后仍可供水,调试后不需看守。广泛用于企业单位、立式无塔供水住宅区及村庄的出产、日子、

作业供水。适用于供水户在50

含参数导数常见的讨论

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

含参数导数问题的三个基本讨论点

导数是研究函数图像和性质的重要工具,自从导数进入高中数学教材以来,有关导数问题是每年高考的必考试题之一。随着高考对导数考查的不断深入,含参数的导数问题又是历年高考命题的热点。由于含参数的导数问题在解答时往往需要对参数进行讨论,因而它也是绝大多数考生答题的难点,具体表现在:他们不知何时开始讨论、怎样去讨论。对这一问题不仅高中数学教材没有介绍过,而且在众多的教辅资料中也难得一见,本文就来讨论这一问题,供大家参考。

一、

求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。

?1,x?1?例1(2008年高考广东卷(理科) 设k?R,函数f(x)??1?x,F(x)?f(x)?kx,x?R,

??x?1,x?1?试讨论函数F(x)的单调性。

?1?k?1?x?2,x?1??12?kx,x?1,???1?x?,F'(x)??解:F(x)?f(x)?kx??1?x。

??x?1?kx,x?1?1?2kx?1?,x?1??2x?1?考虑导函数F'(x)?0是否有实根,从而需要对参数k的取值进行讨论。

1?k?1?x?2(一)若x?1,则F'(x)??1?x?2。由于当k?0时,F'(x)?0无实根

二次函数的应用

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1.抛物线y=﹣x+bx+c的部分图象如图所示,要使y>0,则x的取值范围是( )

2

A.﹣4<x<1 B.﹣3<x<1 C.x<﹣4或x>1 D.x<﹣3或x>1

2.如果将二次函数y=2x的图象沿y轴向下平移1个单位,再向右平移3个单位,那么所得图象的函数解析式是___

3.如图,抛物线y1=-x+2向右平移1个单位得到的抛物线y2.回答下列问题:

22

(1)抛物线y2的解析式是_____,顶点坐标为_____; (2)阴影部分的面积_____;

(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的解析式为_____,开口方向_____,顶点坐标为_____.

4.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.

(1)请直接写出D点的坐标. (2)求二次函数的解析式.

(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

二次函数的应用——求周长面积问题

1.已知:如图,二次函数的图象与x轴交于A(-2,0),B(4,0)两点,且函数的最大值为9.

(1)求二次函

含参数的一元二次不等式的解法

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

很好的课件哦

含参数的一元二次不等式

很好的课件哦

复习引入 一元二次方程、 一元二次函数、一元二次方程、一元二次不等 式的相互关系及其解法: 式的相互关系及其解法: = b 2 4 ac二次函数

>0y0 x1

=0y

<0yx

y = ax2 +bx+c(a > 0)的图像 一元二次方程

x2 x

0x1 = x 2

0x无实根

ax +bx+c = 0(a > 0)2

b b2 4ac x1 = 2a b + b2 4ac x2 = 2a1 2

有两个相等实根

的根

b x1 = x2 = 2a

ax2 + bx+ c > 0(a > 0)的解集

{x x < x 或x > x } x x ∈ R且 x ≠ 2ba

x∈ Rφ

ax2 +bx+c < 0(a > 0)的解集

{x x < x < x }1 2

φ

很好的课件哦

复习引入

解一元二次不等式的一般步骤1:确定二次项系数的符号 : 2:判别△(能十字相乘法的不需判别) :判别△ 能十字相乘法的不需判别) 3:由1;2两个步骤画出不等式所对应函 : ; 两个步骤画出不等式所对应函 数的大致图

《二次函数》说课稿

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

《二次函数y=ax2+bx+c(a≠0)的图象与字

母系数a、b、c的关系》

说 课 稿

一.教学背景分析: (一)教材分析

本节课的教学内容是二次函数y=ax2+bx+c(a≠0)的图象与字母系数a、b、c的关系, 是二次函数图像和性质及一元二次方程与函数的综合性应用,是二次函数教学中的重点、难点之一,它是集图像、符号、文字为一体的问题。同时也是近年来中考命题的热点,在中考试卷中通常以选择题(3分)或填空题(4分)的方式呈现。因为所占的分值少,加之需要学生有良好的学习基础,所以教学中未能引起教师和学生的足够重视。学生在识图的过程中往往容易忽略特殊点、对称轴问题,不去归纳和总结解决这类问题的模型,所以其中一个选择支的误判,就会增加失分,而且影响学生对后面二次函数综合性问题解决的能力的提升。因此通过这一教学内容做专题性的研讨,尝试寻求建立解决这一问题的模型,优化解决问题的方法。从而提高学生分析和解决问题的能力。 (二)学情分析:

学生已经学习了二次函数图像及性质等相关内容,具有一定的知识储备,能运用图像和性质对简单的问题进行分析和解答,但部分学生的计算能力、推理能力较弱,对这类问题的数形结合思想、特殊点函数值的利用、式子的变形技巧等,不能结

二次函数(应用)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

二次函数应用

1.(2012?聊城)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元? 2.(2010?武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).

(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围; (2)设宾馆一天的利润为w元,求w与x的函数关系式;

(3)一天订住多少个房间时,宾馆的利

二次函数(课)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

二次函数

【教学目标】

1.了解二次函数的意义,会用待定系数法求二次函数的解析式.

2.会用描点法画二次函数的图象,通过图象了解二次函数的性质,并运用二次函数的性质解决相关问题.

3.了解二次函数与一元二次方程的关系,进一步体会数形结合、转化等思想方法.

【教学重难点】

二次函数的图象和性质的应用.

【教学过程】

一、基础训练

1.二次函数y ax2 bx c(a 0)图象如图所示.

(1)你能根据图中的信息得出哪些结论?

(2)若抛物线与x轴交点的横坐标为-1和5,则该抛物线的对称轴为 ,方程ax2 bx c 0的根为;

(3)若抛物线的顶点坐标为(2,9),则方程ax bx c m有实数根的条件是 ;

(4)在(2)的条件下,若抛物线与y轴交于点(0,5),请求出该二次函数解析式.

2

二、合作交流

1.二次函数y ax2 bx c(a≠0)图象如图所示,下列结论:①abc>0;②2a b=

220;③当m≠1时,a b>am2 bm;④a b c>0;⑤若ax1 bx1=ax2 bx2,且x1

≠x2,则x1 x2=2.其中正确的有( ).

A.①②③

C.②⑤ B.②④ D.②③⑤

2.若抛物线y mx (m 2)x 1m