回归分析模型

“回归分析模型”相关的资料有哪些?“回归分析模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“回归分析模型”相关范文大全或资料大全,欢迎大家分享。

线性回归分析的数学模型

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

线性回归分析的数学模型

摘 要

在实际问题中常常遇到简单的变量之间的关系,我们会遇到多个变量同处于一个过程之中,它们之间互相联系、互相制约.这些问题中最简单的是线性回归.线性回归分析是对客观事物数量关系的分析,是一种重要的统计分析方法,被广泛的应用于社会经济现象变量之间的影响因素和关联的研究.由于客观事物的联系错综复杂经济现象的变化往往用一个变量无法描述,故本篇论文在深入分析一元线性回归及数学模型的情况下,又详细地介绍了多元线性回归方程的参数估计和其显著性检验等.全面揭示了这种复杂的依存关系,准确测定现象之间的数量变动.以提高预测和控制的准确度.

本文中详细的阐述了线性回归的定义及其线性模型的简单分析并应用了最小二乘法原理.具体介绍了线性回归分析方程参数估计办法和其显著性检验.并充分利用回归方程进行点预测和区间预测.

但复杂的计算给分析方法推广带来了困难,需要相应的操作软件来计算回归分析求解操作过程中的数据.以提高预测和控制的准确度.从而为工农业生产及研究起到强有力的推动作用.

关键词:线性回归;最小二乘法;数学模型

目 录

第一章 前言………………………………………………………………

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析

系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。(自变量不直接含有时间变量,但隐含时间因素)

1. 自回归AR(p)模型

(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)

(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)

yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt

式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;

εt不同时刻互不相关,εt与yt历史序列不相关。 式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定; yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系; yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值; φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt依赖于过去的程度,且这种依赖关系恒

Logistic回归模型

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

Logistic回归模型

1 Logistic回归模型的基本知识 1.1 Logistic模型简介

主要应用在研究某些现象发生的概率p,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率

p与那些因素有关。显然作为概率值,一定有0?p?1,因此很难用线性模型描述概率p与自变量的关

系,另外如果p接近两个极端值,此时一般方法难以较好地反映p的微小变化。为此在构建p与自变量关系的模型时,变换一下思路,不直接研究p,而是研究p的一个严格单调函数G(p),并要求G(p)在p接近两端值时对其微小变化很敏感。于是Logit变换被提出来:

Logit(p)?lnp1?p (1)

其中当p从0?1时,Logit(p)从?????,这个变化范围在模型数据处理上带来很大的方便,

解决了上述面临的难题。另外从函数的变形可得如下等价的公式:

Logit(p)?lnp1?p??XT?p?e?TXT1?e? (2)

X 模型(2)的基本要求是,因变量是个二元变量,仅取0或1两个值,而因变量取1的概率P(y?1|X)T就是模型要研究的对象。而X?(1,x1,x2,?,xk),其中xi表示影响y

非参数回归模型与半参数回归模型

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

第七章 非参数回归模型与半参数回归模型

第一节 非参数回归与权函数法

一、非参数回归概念

前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。

设Y是一维观测随机向量,X是m维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称

g (X) = E (Y|X) (7.1.1)

为Y对X的回归函数。我们证明了这样的回归函数可使误差平方和最小,即

E[Y?E(Y|X)]2?minE[Y?L(X)]2

L (7.1.2)

这里L是关于X的一切函数类。当然,如果限定L是线性函数类,那么g (X)就是线性回归函数了。

细心的读者会在这里立即提出一个问题。既然对拟合函数类L(X)没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Yi,Xi)就可以了是的,对拟合函数类不作任何限制是完全没有意义的。

非参数回归模型与半参数回归模型

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

1

第七章 非参数回归模型与半参数回归模型

第一节 非参数回归与权函数法

一、非参数回归概念

前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。

设Y 是一维观测随机向量,X 是m 维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称

g (X ) = E (Y |X ) (7.1.1)

为Y 对X 的回归函数。我们证明了这样的回归函数可使误差平方和最小,即

22)]([min )]|([X L Y E X Y E Y E L -=- (7.1.2)

这里L 是关于X 的一切函数类。当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。

细心的读者会在这里立即提出一个问题。既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数

logistic回归模型在ROC分析中的应用

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

22

主垦里生缠进2QQZ生2县筮丝鲞筮!塑

logistic回归模型在ROC分析中的应用

陈卫中1潘晓平2倪宗瓒2

【提要】目的

探讨logistic回归模型在有协变量或多指标联合诊断试验ROC分析中的应用。方法

根据疾病状

态建立logistic回归模型。通过形成的预测概率或联合预测因子为分析指标,并结合非参数模型和双正态模型建立ROC曲线。结果通过实例阐述了整个分析过程,并说明了该试剂盒的有效性,同时利用两种模型得到了一致的结果。结论ROC分析中结合logistic回归模型简单有效,尤其适用于有协变量或多指标联合诊断试验的分析评价。

【关键词】诊断试验ROC曲线冠心病logistic模型双正态模型

ROC盐线(receiver

operatingcharacteristic

curve)

指标,对于某个截断点Pk有:若flYi≥g(Pk),‰=

1;若卢yf<g(P^),Y捕=0。对于有两个诊断指标的试验,其图形表示如图1所示,形成一个面而非一点。从而得到敏感度和特异度,构建ROC曲线。

分析被认为是一种诊断试验评价中的理想和经典的方法…。但在一个诊断试验中,由于变异的存在,必然有很多混杂因素(或协变量)对试验的评价产生影响,它们可能对疾病的状态产生影响,也可

多元线性回归模型

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

第三章 多元线性回归模型

基本概念

(1)多元线性回归模型; (2)偏回归系数;

(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题

1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性

的过程中,哪些基本假设起了作用?

2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?

3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?

X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(

X4)、睡觉()、 娱乐()

)所用时间的关系的研究中,建立如下回归模型:

Y??0??1X1??2X2??3X3??4X4?u

如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?

5.表3-1给出三变量模型的回归结果。

logistic回归模型讲稿

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

Logistic回归分析模型

2016-10-24

1各位老师,同学们大家上午好:非常感谢大家抽出宝贵的时间来

参加沙龙,感谢我的导师对沙龙内容及PPT制作过程中的悉心指导,今天和大家一起分享的是在课题中用到的一种统计学分析方法,Logistic回归分析。

2这是CNKI学术搜索给出的近年来Logistic回归分析方法的学术关注度,由此可见,Logistic回归分析方法在当前学术研究中应用比较广泛、流行,关注度比较高,是进行科研数据分析不可缺少的利器。 3下面我将分以下几个部分对回归模型做详细的介绍: 1.Logistic回归的基本概念与原理;2.Logistic回归的应用范畴;3.Logistic回归的类型及实例分析;这是本次沙龙的重点部分。4.应用Logistic回归的注意事项;5.小结与答疑。

4首先来了解一下Logistic回归模型的基本概念与原理:Logistic 回归又称「Logistic 回归分析」,是一种「概率型非线性回归」,主要用于危险因素分析以及预后评估等方面,是目前流行病学和医学中最常用的分析方法之一。近年来已逐渐成为发表高质量 SCI 论文必不可少的重要统计学分析利器。 Logistic 回归本质上

多元线性回归模型

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

第三章 多元线性回归模型

基本概念

(1)多元线性回归模型; (2)偏回归系数;

(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题

1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性

的过程中,哪些基本假设起了作用?

2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?

3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?

X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(

X4)、睡觉()、 娱乐()

)所用时间的关系的研究中,建立如下回归模型:

Y??0??1X1??2X2??3X3??4X4?u

如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?

5.表3-1给出三变量模型的回归结果。

经典线性回归模型

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

第二章 经典线性回归模型:双变量线性回归模型 回归分析概述 双变量线性回归模型的参数估计 双变量线性回归模型的假设检验 双变量线性回归模型的预测 实例

引子: 中国旅游业总收入将超过3000亿美 元吗?从2004中国国际旅游交易会上获悉,到2020年,中国旅游 业总收入将超过3000亿美元,相当于国内生产总值的8% 至11%。(资料来源:国际金融报2004年11月25日第二版) ◆是什么决定性的因素能使中国旅游业总收入到2020年达到 3000亿美元? ◆旅游业的发展与这种决定性因素的数量关系究竟是什么?

◆怎样具体测定旅游业发展与这种决定性因素的数量关系?

一、回归与相关(对统计学的回顾)

1. 经济变量间的相互关系◆确定性的函数关系

Y f (X )

◆不确定性的统计关系—相关关系

Y f (X ) ◆没有关系

(ε为随机变量)

2.相关关系◆ 相关关系的描述 相关关系最直观的描述方式——坐标图(散布图)

Y

X

◆相关关系的类型 ● 从涉及的变量数量看简单相关 多重相关(复相关)

● 从变量相关关系的表现形式看线性相关——散布图接近一条直线 非线性相关——散布图接近一条曲线

● 从变量相关关系变化的方向看