大学数学分析放缩法
“大学数学分析放缩法”相关的资料有哪些?“大学数学分析放缩法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“大学数学分析放缩法”相关范文大全或资料大全,欢迎大家分享。
同济大学数学分析2000
一、计算 (1)lim[x x2ln(1 x 1x )] (3) min(e
0 x,)dx 2
2222 u x 2y z z z z(2)设变换方程 可把62 =0简化为 0,求常数a。 2v x ay x y x y u v
二、将函数 x 2f(x)
0
x
a220 x 2 2z22展开正弦级数,并指出该正弦级数的和函数。 x 三、求在椭球面 yb22 c 1(a,b,c R)内嵌入的有最大体积的各棱平行于坐标
轴的直角平行六面体的体积 四、证明曲线积分 (1
Lyx22cosyx)dx (sinyx_yxcosyx)dy在右半平面内与积分路径无
关,并当L的起点为(1, ),终点为(2, )时计算此积分。
五、求积分
y azxdy d2yzzdz d(1x z)dxd,y其中 为yoz2面上的曲线z e(0 y a)绕z轴旋转所得的曲面的下侧。
dsinx
( f(x,y)dy)x 0 dxx六、设函数f(x,y)在R2上有连续的偏导数,问函数g(x) d xtsint( edt)x 0 dxt0
在哪些间断点处连续?若有间断点,请指出其类型并说明理由。
七、设f(x)为[0. ]上恒
取正值的连续
数学分析2
▇ ▇ 数学分析
《数学分析Ⅰ》第2讲 教学内容:实数系的连续性
第二章 数列极限
§2.1实数系的连续性
一. 实数系的产生(历史沿革)
从人类历史的开始,人类就逐步认识了自然数,1,2,3,?,n,?
自然数集 整数集 有理数集 实数集
解决的减法解决对除法?????????? ? 的封闭性的封闭性解决对开方?????的封闭性? ? ?
对加法封闭 对加减乘封闭 对加减乘除封闭 对减法不封闭 对除法不封闭 对开方不封闭
2000多年前,毕达哥拉斯学派认为:有理数集是最完美的数集;世界上的万事万物都可以用有理数表示。
但是,毕达哥拉斯的一个“叛逆”的学生,发现了边界为1的正方形的对角线长度不是一个有理数,即
数轴上点c不是一个有理数点。
例2.1.1设c?2,试证明:c不是一个有理数。
2p,则q222p2?c2q2?2q2,所以2|p,不妨设p?2p1,故(2p1)?2q,所以2p1?q, 所以2|q,记q?2q1,即p?2p1,q?2q1,这与 (p,q)
数学分析习题
《数学分析Ⅱ》期中考试题
一、选择题(每小题3分,共30分)
1、曲线2x2 +3y2 + z2 =9, z2 =3x2 + y2 在点 ( 1, -1, 2 )的法平面方程是( 1 )
A、8x+10y+7z-12=0; B、8x+10y+7z+12=0;C、8x -10y+7z-12=0; D、8x+10y+7z+12=0 2、L为单位圆周,则
??Lyds?( 4 )
A、1 B、2 C、3 D、4 3、L为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则
?Lzdx?xdz= ( 3 )
A、3 B、5 C、7 D、9 4、
??x?y?13?x?y?dxdy=( 2 )
A、2 B、4 C、6 D、8 5、
?0?12dy?21?y1?x0f(x,y)dx,改变积分顺序得( 1 ) f(x,y)dy B、?dx?121?x?11?x?1A、C、
??12dx?dx?f(x,y)dy f(x,y)dy
1?x01f(x,y)dy D、?dx?126、V=[-2, 5]?[
数学分析试卷
第十三章 函数项级数 应用题
第十三章
函数项级数 计算题
1.设S(x)=?ne?nx x>0,计算积分?ln3ln2S(t)dt
2..判断级数?(?1)nxnn1?xn(x>0)的敛散性.
第十三章 函数项级数 计算题答案
1.?ne?nx在[ln2,ln3]上连续且一致收敛
?它在[ln2,ln3]可逐积分 (得4分)
??ln3?s(t)dt?ln3ne?nxdxln2?? (得6分)
n?1ln2? =?[(1)n?(1)n23]?1?1?1 (得8分)
n?11?121?12 32. 对交错级数?(?1)nn 由莱布尼兹判别法知它收敛 (得3分)
而
xn1?xn 当x>1时,单增有界 ; x=1时,值为
12 ; 当x<1时,单降为界 (得6分)
故由阿贝尔判别法知?(?1)nxnnn收敛
数学分析答案
第2,3,11章 习题解答
习题2-1
1. 若自然数n不是完全平方数.证明n是无理数. 证明 反证法. 假若n?pq(p,q?N,且p,q互质),于是由nq2?p2可知,q2是
p2的因子,从而得q2?1即p2?n,这与假设矛盾.
2. 设a,b是两个不同实数.证明在a和b之间一定存在有理数.
证明 不妨设a
1
mm综上可得 na
nn3. 设x为无理数.证明存在无穷多个有理数
pq(p,q为整数,q?0)使得x?pq?1q2.
证明 反证法. 假若只有有限个有理数满足不等式,即
x?令
piqi<
1qi2 , (i?1,2,3?,m)
??p??min?x?ii?1,2,3,?,m?
qi??取 N:N?1, 且选取整数p,q(0?q?N), 使得 ?p111, x??N?2
qqqNp1??N???, qqq qx?p?但因q是正整数,故又有x?从而可知
习题2-2
ppi? (i?1,2,3,?m), 这与假设矛盾. qqi1.求下列数集的上、下确界. (1)?1???1??1? n?N?, (2)?(1?)nn?N?,
数学分析 答案AA
玉林师范学院课程期末考试试题参考答案及评分标准 (2006——2007学年度第二学期) 命题教师:梁志清 命题教师所在系:数计系 试卷类型:(A)
装
订 线 装 订 线
课程名称:数学分析Ⅳ 考试专业:数学与应用数学 年级: 2005
题号 应得分 一 20 二 15 三 42 四 7 五 16 总分 一 填空题 (每小题2分)
1 1; 2 (n?1)!; 3
2; 4 1; 5 1; 6 2?10dx?f(x,y)dy;
x17 x3?y3?3xy?c;8
2?6;9 ?a;10 。 34二 单项选择题 (每小题3分)
1 A; 2 B; 3 B; 4 D;5 C。
三 计算题
22 1 L:x?y?2y,令x?cos?,y?1?sin?,则0???2? ??2分
于是ds?d? ??3分
?(xL2?y)ds??2(1?sin?)d?
河海大学2002年数学分析
河海大学2002年数学分析
一、计算下列极限(16分,每题4分)
1
、n →∞++ ;
2、111lim()122n n n n
→∞+++++ ; 3
、0x →; 4
、32lim x x →+∞
二、计算下列积分(12分,每题4分)
1、arctan x xdx ?
2
、
3、24011x dx x
+∞
++? 三、设函数()f x 和()g x 在[],a b 连续,在(),a b 可导.证明:在(),a b 内至少存在一点ξ,使得()()()()()()()()()
f a f b f a f b a
g a g b g a g ξξ'=-'.(8分) 四、设函数()f x 和()g x 在[],a b 都可积,证明不等式:
222(()())(())(())b b b
a a a f x g x dx f x dx g x dx ≤???.(8分) 五、试用3x y x y ξη=-??=+?
作为新的自变量变换方程230xx xy yy u u u +-=.(8分) 六、求幂级数1
(1)n
n x n n ∞=+∑的和函数,并指出其定义域. (8分) 七、设某种流体的速度为v xi yj zk =++ ,求单位时间内流体流过曲面22:y x z
∑=+(2
数学分析 答案AA
玉林师范学院课程期末考试试题参考答案及评分标准 (2006——2007学年度第二学期) 命题教师:梁志清 命题教师所在系:数计系 试卷类型:(A)
装
订 线 装 订 线
课程名称:数学分析Ⅳ 考试专业:数学与应用数学 年级: 2005
题号 应得分 一 20 二 15 三 42 四 7 五 16 总分 一 填空题 (每小题2分)
1 1; 2 (n?1)!; 3
2; 4 1; 5 1; 6 2?10dx?f(x,y)dy;
x17 x3?y3?3xy?c;8
2?6;9 ?a;10 。 34二 单项选择题 (每小题3分)
1 A; 2 B; 3 B; 4 D;5 C。
三 计算题
22 1 L:x?y?2y,令x?cos?,y?1?sin?,则0???2? ??2分
于是ds?d? ??3分
?(xL2?y)ds??2(1?sin?)d?
数学分析难点与重点
《数学分析难点与重点分析》
基础篇
第一讲 数列极限
参考书(高等数学考研习题(八几年的书)16开,32考研的习题解答(八几年棕色),华罗庚的高等数学) 前言
先写数列极限的定义及其性质介绍,详见谁的书等等。再介绍本章的主要内容,出发点。 1.1 数列极限的求法(Taylor公式,连续化提一下,详见后面) 1.2 Cauchy命题与Stolz定理 1.3 上下极限
1.4 Rn中点列的收敛 习题1
第二讲 实数理论
实数的定义,构造历史,实数定理得出发点。 先列定理,分析定理,举例子。
等价性的证明,书上有的见什么地方,比较新颖的证明给出。 2.1 实数基本定理
2.2 实数理论的一些例子 习题2
第三讲 函数极限与连续性
用有限刻画无穷的思想在前言中描述 3.1 函数极限的计算
洛必达应用条件,不能应用洛必达法则但极限存在的。 3.2 Heine定理与左右极限 3.3 函数的连续性 3.4 函数的一致连续性
开区间上的一致连续性,包括有限无穷区间。一致连续性对于乘法、除法的封闭性。 3.5 多元函数的极限与连续性(和一元极限的区别,收敛的方向变多) 习题3
微分篇
第四讲 一元微分学
定义放序言,导数几何意义等
上海大学数学分析历年考研真题
上海大学2000年度研究生入学考试试题
数学分析
1、 设
yn?x1?2x2??nxna,若limxn?a,证明:(1)当a为有限数时,limyn?;
n??n??2n(n?1)n??(2)当a???时,limyn???.
2、设f(x)在?0,1?上有二阶导数(端点分别指左、右导数),f(0)?f(1)?0,且
minf(x)?? 11?0,?证明:maxf??(x)?8
?0,1?p?1, 当x= (q?0,p,q为互质整数)?3、 证明:黎曼函数R(x)??qq在?0,1?上可积.
?0,当x为无理数?4、 证明:lim?t?0tf(x)??1t2?x2dx??f(0),其中f(x)在??1,1?上连续.
1??n1??5、 设an?ln?1???1?p?,讨论级数?an的收敛性.
n??n?26、 设
???0f(x)dx收敛且f(x)在?0,???上单调,证明:limh?f(nh)???h?0n?1????0f(x)dx.
x2y27、 计算曲面x?y?z?a包含在曲面2?2?1(0?b?a)内的那部分的面积.
ab22228、 将函数f(x)?x在?0,2??上展成Fourier级数,并计算级数
sink的值. ?kk?1??上海大