中考相似三角形专题
“中考相似三角形专题”相关的资料有哪些?“中考相似三角形专题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中考相似三角形专题”相关范文大全或资料大全,欢迎大家分享。
相似三角形专题复习
相似三角形专题复习
相似三角形专题复习
知识点归纳:
一、相似三角形的定义
三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法
1. 若DE∥BC(A型和X型)则______________. 2. 两个角对应相等的两个三角形__________.3. 两边对应成_________且夹角相等的两个三角形相似.4. 三边对应成比例的两个三角形___________. 三、相似三角形的性质
1. 相似三角形的对应边_________,对应角________.
2. 相似三角形的对应边的比叫做________,一般用k表示.
3. 相似三角形的对应角 ,对应边的________线,对应边上的______的比等于
3、掌握相似三角形的判定定理并且运用相似三角形定理证明三角形相似及比例式或等积式。
4
、相似三角形的基本图形)
A
C
D
D E
B
B C A
C
练习一:三角形相似的判定
1. 从下面这些三角形中,选出相似的三角形.
2. 如图,已知 ABD∽ ACE,求证: ABC∽ ADE.
3.如图, Rt△ABC, 斜边AC上有一点D(不与点A、C重合), 过D点作直线截△ABC, 使截得的三角形与△ABC相
专题:相似三角形说课稿
相似三角形说课稿
杨 伟
一. 教材分析
相似三角形位于中考系统复习第六章,图形与变换中图形相似的一个分支。在中考中占有重要地位分值为8分左右,所考查知识主要是相似三角形性质及判定。重点是相似三角形在实现生活中的应用,题型多以解答题型式出现,而题目的载体可以是四边形,圆, 函数和图形的运动变化。难度,较难。 二.目标分析
(一) 目标:
① 了解相似三角形的性质,掌握两个三角形相似的
性质与判定条件。
② 能利用图形的相似解决一些实际问题。
(二) 重难点
①重点:利用相似三角形的相关知识解决实际问题。 ③ 难点:如何把实际问题转换成有关相似三角形的
数学模型。
三.
教法分析与教学设计
充分确立学生在教学中的主体地位。贯彻师生合作精神,
实现高效、民主教学,为此我采用“三环七步、探究学习法”其流程为:创设情境——合作探究——个性展示——反馈拓展——课堂小结——布置作业。
针对本班学生的学情,我设置较为现实中应用。再次,渗透“转化”“建模”的数学思想。设参数、列方程的数学方法。 课前以小故事的形式(设置怎样测量金字塔的高度)引入课文,给学生设下疑
相似三角形说课稿
《相似三角形》说课稿
各位领导、老师下午好!
今天我说的内容是:人教版九年级数学下册《相似三角形》
我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价6个方面来对本课进行说明 一、 说教材
1、教材所处的地位和作用
《相似三角形》是义务教育数学课程标准实验教材。相似三角形的知识是在全等三角形的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。同时对后续教学内容起奠基作用,也为学生今后学习和生活更好的运用数学做准备。 2、教学目标
(1)知识目标 探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
(2)能力目标 通过教学渗透类比的思想方法,培养学生探究新知识的能力及运用所学知识解决实际问题的能力。
(3)情感目标: 让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3、教学重点、难点:
本课重点是深入理解认识相似三角形的概念 难点是 ①相似三角形性质的应用;
②促进学生有条理的思
相似三角形教案
相似三角形教案
一、教学目标
知识与技能
1. 理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
2. 能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。
过程与方法
1. 经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。
2.在探索实践中培养学生分析问题、解决问题的能力。
情感态度与价值观
1. 在获得知识的过程中培养学习的自信心 ,知道数学来源于生活有服务于生活。
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.
二、重点难点
重点
理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难
点
相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.
三、学情分析
相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。
四、教学过程设计
教学知: ABC∽ A’B’C’,根据相似的定义,我们有哪些结论?
2、
中考相似三角形经典题集锦
1、若
x24x?3y=______; ?,则
y32x?y2、若x:y:z?2:3:5,x?y?z?50,则2x?y?z? 。
3、如果点P是线段AB的黄金分割点,且AP>PB,则下列命题,①AB2?AP?PB,②BP2?AP?AB,③AP2=PB·AB,④AP:AB?PB:AP,其中正确的是 (填序号)。
4、两个相似三角形的一对对应边分别为20cm,8cm,他们的周长相差60cm ,则这两个三角形的周长为_______________, _______________.
o
5、如右图,△ABC中∠ACB=90,CD⊥AB于D。 则图中能够相似的三角形共有( )
A.1对 B.2对 C.3对 D.4对
6. 如图,D是△ABC的边AB上的一点,过点D作DE∥BC交AC于E,若AD:BD = 4:3,
则S△ADE:S四边形 BCED=______________. A D
7、如图,在梯形ABCD中,AD∥BC,AC、BD交于O点,
S?AOD:S?COB?1:9,则S?DOC:S?BOC=
B
O C
第7题
8、如图,矩形EFGH内接于△ABC
中考相似三角形经典题集锦
1、若
x24x?3y=______; ?,则
y32x?y2、若x:y:z?2:3:5,x?y?z?50,则2x?y?z? 。
3、如果点P是线段AB的黄金分割点,且AP>PB,则下列命题,①AB2?AP?PB,②BP2?AP?AB,③AP2=PB·AB,④AP:AB?PB:AP,其中正确的是 (填序号)。
4、两个相似三角形的一对对应边分别为20cm,8cm,他们的周长相差60cm ,则这两个三角形的周长为_______________, _______________.
o
5、如右图,△ABC中∠ACB=90,CD⊥AB于D。 则图中能够相似的三角形共有( )
A.1对 B.2对 C.3对 D.4对
6. 如图,D是△ABC的边AB上的一点,过点D作DE∥BC交AC于E,若AD:BD = 4:3,
则S△ADE:S四边形 BCED=______________. A D
7、如图,在梯形ABCD中,AD∥BC,AC、BD交于O点,
S?AOD:S?COB?1:9,则S?DOC:S?BOC=
B
O C
第7题
8、如图,矩形EFGH内接于△ABC
相似三角形题型总结
一.解答题(共21小题)
1.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N. (1)在以下结论①∠FDB=∠FEB;②MC垂直平分BD;③△DFN∽△EBD中正确的有 _________ ,请选择一个你认为正确的结论进行证明.
(2)若MC=,求BF的长.
2.(2011?聊城)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G
2
重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm) (1)当t=1秒时,S的值是多少?
(2)写出S和t之间的函数解析式,并指出自变量t的取值范围;
(3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.
3.(2010?崇川区模拟)用一副三角板拼成如图①所示的四边形ABCD,其中∠ADC=∠ACB=90°,∠B=60°,AD=DC=cm.若把△ADC的顶点C
相似三角形讲义(3)
相似三角形(3)
一、根据已知,探索图形相似的条件
例题1、 如图,点C、D在线段AB上,且△PCD是等边三角形. (1)当AC、CD、DB满足怎样的关系式时,△ACP∽△PDB. (2)当△PDB∽△ACP时,试求∠APB的度数.
变式1、在直角三角形中,∠ACB=90°,在△ABC外做一个直角三角形BCD,使∠BDC=90°,设AB=5,BC=3,当CD为多长时,这两个三角形相似?
例题2、(动点问题)如图,在矩形ABCD
中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.
变式1如图,在矩形ABCD
中,AB=5cm,BC=10cm,动点P在AB边上由A向B作匀速运动,1分钟可到达B点;动点Q在BC边上由B向C作匀速运动,1分钟可到达C点,若P、Q两点同时出发,问经过多长时间,恰好有PQ⊥BD?
CQB P
DA
1
变式2.(七中)如图,△ABC中,AD⊥BC于D,下列条件:⑴∠B+∠DAC=90°;
CDAC2⑵∠B=∠DAC;
相似三角形基础讲义
天材 教 育 数学教研组
相似三角形基础讲义
下图中,E为平行四边形ABCD的对角线AC上一点,AE∶EC=1∶3,BE的延长线交CD的延长线于G,交AD于F,求证:BF∶FG=1∶2.
如下图,△ABC中,AD∥BC,连结CD交AB于E,且AE∶EB=1∶3,过E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.
已知平行四边形ABCD中,AE∶EB=1∶2,求△AEF与△CDF的周长比,如果S△AEF=6cm2,求S△CDF.
如下图,已知在△ABC中,AD平分∠BAC,EM是AD的中垂线,交BC延长线于E.求证:DE2=BE·CE.
如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是 A.?a
1212 B.?(a?1)
D.?(a?3)
1212 C.?(a?1)
已知:在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB延长线于F求证:
ABDF. ?ACAF 1
天材 教 育 数学
相似三角形应用举例
27.2.2 相似三角形应用举例
学习目标、重点、难点
【学习目标】
1.进一步巩固相似三角形的知识.
2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.
3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.
【重点难点】
1.运用三角形相似的知识计算不能直接测量物体的长度和高度.
2.灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).
知识概览图
相似三角形的应用:灵活把握题意,把实际问题转化为数学问题,运用数学建模思想和数形结合思想灵活地解决问题.
新课导引
【生活链接】 王芳同学跳起来把一个排球打在离她2 m远的地上,然后球反弹碰到墙上,如果王芳跳起击排球时的高度是1.8m,排球落地点离墙的水平距离是6m,假设排球一直沿直线运动,那么排球能碰到墙上离地多高的地方?
【问题探究】 由题意可得到如右图所示的图形.已知AB=1.8 m,AP=2 m,PC=6 m,PQ⊥AC,那么如何求DC的长呢?由已知可证Rt△APB∽Rt△CPD,由相似三角形的性质可知AB