电学取值范围方法规律总结
“电学取值范围方法规律总结”相关的资料有哪些?“电学取值范围方法规律总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“电学取值范围方法规律总结”相关范文大全或资料大全,欢迎大家分享。
电学取值范围计算
电学取值范围计算求不损坏电路元件时, 1.变阻器阻值的变化范围, 2.电路中电流变化范围, 3.用电器两端电压变化范围, 4.用电器功率变化范围, 5.电路总功率变化范围。
1.串联电路取值范围计算; 2.并联电路取值范围计算。
串联电路取值范围计算S A aR1 V
P R2
b
在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下: 1. 滑动变阻器R2的调节范围是多少?
S A
aR1
P R2
b
在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下: 2. 电路中电流大小的变化范围是多少?
S A
aR1
P R2
b
在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下 , 3. 电阻R1两端电压的变化范围值是多少?
S A
aR1
P R2
b
在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “2
导数含参数取值范围分类讨论题型总结与方法归纳
导数习题题型十七:含参数导数问题的分类讨论问题
含参数导数问题的分类讨论问题
1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数f(x)?x3?(a?2)x2?2ax(a>0),求函数的单调区间
f?(x)?x?(a?2)x?2a?(x?a)(x?2) ★★例1 已知函数f(x)?x?2a?(a?2)lnx(a>0)求函数的单调区间 x1312x2?(a?2)x?2a(x?2)(x?a)? f?(x)? 2xx22ax?a2?1★★★例3已知函数f?x???x?R?,其中a?R。 2x?1(Ⅰ)当a?1时,求曲线y?f?x?在点2,f?2?处的切线方程; (Ⅱ)当a?0时,求函数f?x?的单调区间与极值。
??解:(Ⅰ)当a?1时,曲线y?f?x?在点2,f?2?处的切线方程为6x?25y?32?0。
2a(x2?1)?2(Ⅱ)由于a?0,所以f??x?? ,由
x2?1????1f'?x??0,得x1??,x2?a。这两个实根都在定
a1???2ax?ax?????2a?x?1??2x?2a
求函数参数的取值范围
导数的应用——求函数中参数的取值范围
一、教学目标及要求:
1.掌握求函数中参数的常用方法
2.熟练解决题中恒成立、存在、任意等问题 3.了解相关数学思想和方法 二、主要命题方式:
方式一:给出函数的单调性,求函数的解析式中的参数取值范围
方式二:已知某个不等式在给定区间上恒成立,求解析式中的参数取值范围
方式三:已知函数的极值点、极值、极值点的个数。求函数解析式中参数的取值范围 三、典例解析
命题方式一:给出函数的单调性,求函数的解析式中的参数取值范围 例1:已知函数f(x)=(x2+bx+b) 1?2x(b?R) (1)当b=4时 求f(x)的极值。 (2)若f(x)在区间(0,
方法总结:
1)上单调递增,求b的取值范围。 3命题方式二:已知某个不等式在给定区间上恒成立, 求解析式中的参数取值范围
例2:已知函数f(x)=ex-ax,其中a>0,若对一切x?R、 f(x)≥1恒成立,求a的取值范围。
方法总结:
命题方式三:已知函数的极值点、极值、极值点的个数。求函数解析式中参数的取值范围
ex2例3.设函数f(x)?2?k(?lnx)(k为常数)xx
解析几何中求参数取值范围的几种方法
解析几何中求参数取值范围的方法
http://www.TL100.com 作者:佚名 文章来源:天利淘题 更新时间:2010/3/20 8:56:02 分享
近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法:
一、利用曲线方程中变量的范围构造不等式
曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.
例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 ,
(完整版)利用导数求参数的取值范围方法归纳
利用导数求参数的取值范围
一.已知函数单调性,求参数的取值范围
类型1.参数放在函数表达式上
例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23.
的取值范围
求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(.
,3)()1(-∞=
二.已知不等式在某区间上恒成立,求参数的取值范围
类型1.参数放在不等式上
例3.已知时都取得极值与在13
2)(23=-=+++=x x c bx ax x x f
(1)求a、b的值及函数)(x f 的单调区间.
(2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.32
3
的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--=
类型2.参数放在区间上
例4.已知三次函数d cx x ax x f ++-=2
35)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值.
(1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围.
分析:(1)935)(23++-=x x x x f ]
3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,3
1(9
专题五取值范围探究教师版
2016年中考专题五初中数学取值范围
一.选择题(共5小题)
1.(2015?青岛)如图,正比例函数y1=k1x的图象与反比例函数y2=横坐标为2,当y1>y2时,x的取值范围是( )
的图象相交于A,B两点,其中点A的
A.x<﹣2或x>2
1题图 5题图
B.x<﹣2或0<x<2 C.﹣2<x<0或0<x<﹣2
D.﹣2<x<0或x>2
解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=是﹣2<x<0或x>2.选D.
的上方,∴当y1>y2时,x的取值范围
2.(2015?扬州)已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是( )
A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤2
解:∵x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,∴(2﹣5)(2a﹣3a+2)≤0,解得:a≤2,∵x=1不是这个不等式的解,
∴(1﹣5)(a﹣3a+2)>0,解得:a>1,∴1<a≤2,选:C.
3.(2015?常州)已知二次函数y=x
动画运动规律,结课考试复习范围总结
天津大学,高自考,动画专业,动画运动规律,结课考试复习范围总结,任课教师(张乐鉴),考试时间(2012年)
一、 填空题
1. 动画制作中普遍使用的是每秒_____帧。(绪论) 2. 动画制作中时间是以_____来计算的。(绪论)
3. 运动规律的评价标准需要兼顾______和艺术两者。(绪论) 4.空间透视的核心规律是_______。(第1章) 5.美式动画的核心设计步骤是_________。(第1章) 6.动画的核心设计思路是____________________。(第1章) 7.力学是事物之间________的普遍规律。(第2章)
8.动画中最常用的四个力是_______、________、_________、_________。(第
章)
2
9.抛物线是由______、_______这两个力形成的运动路径。(第2章) 10.跟随运动的两个现象是_________和________(第2章) 11.被风吹动的旗帜呈现一个________形的运动。(第3章) 12.每段曲线由____________________这三点确定。(第3章) 13.旋风的运动路径是_____________形状。(第3章) 14.风的三个主要运动气质____
探究规律题型方法总结和练习
探究规律题型方法总结和练习
一、教学内容:
规律探究型问题
1. 图案变化规律
2. 数列、代数式运算规律
3. 几何变化规律
4. 探索研究
二、知识要点:
近年来,探索规律的题目成为数学中考的一个热点,目的是考查学生观察分析及探索的能力. 题目分为题设和结论两部分,通常题设部分给出一些数量关系或图形变换关系,通过观察分析,要求学生找出这些关系中存在的规律。这种数学题目本身存在一种数学探索的思想,体现了数学思想从特殊到一般的发现规律。是中考的一个难点,越来越引起考生重视。下面我们根据几种不同类型的规律变化类型题进行分析。
“规律探究型问题”根据学生已有的知识基础和认知特点,分别从直观形象和抽象符号上进行规律探索,突出数学的生活化,给学生提供更多机会体验学习和探索的“过程”与“经历”,使之拥有一定的问题解决、课题研究、社会调查的经验,使学生经历探索事物间的数量关系并用字母和代数式表示的过程,建立初步的符号感,发展抽象思维,进一步使学生体会到代数式是刻画现实世界的有效数学模型。现就规律探究的几个例子,来探讨一下这类专题:
一、规律探索型问题的分类:
1、数式规律
通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的
解三角形中相关的取值范围问题
解决与三角形相关的取值范围问题
例1:在锐角ABC中,A?2B,则的取值范围是
例2:若ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sinB?cosB的取值范围是
,ccosA例3:在ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosBcb成等差数列。(1)求B的大小。 (2)若b?5,求ABC周长的取值范围。
例4:在ABC中,a2?b2?c2?ab,若ABC的外接圆半径为
ABC的面积的最大值为 2332,则2
例5:(2008,江苏)满足AB?2,AC?2BC的ABC的面积的最大值是
例6:已知角A,B,C是ABC三个内角,a,b,c是各角的对边,向量
A?B5A?B9m?(1?cos(A?B),cos)n?(,cos),且m?n? ,
2828(1)求tanA?tanB的值。 (2)求
通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以
高考数学专题复习——求解圆锥曲线离心率的取值范围
高考数学专题复习——求解圆锥曲线离心率的取值范围
高考数学专题复习——求解圆锥曲线离心率的取值范围 求圆锥曲线离心率的取值范围是高考的一个热点,也是一个难点,求离心率的难点在于如何建立不等关系定离心率的取值范围.
一、直接根据题意建立a,c不等关系求解.
3ax2y2
例1:(08湖南)若双曲线2 2 1(a>0,b>0)上横坐标为的点到右焦点的距离大2ab
于它到左准线的距离,则双曲线离心率的取值范围是
x2y2
备选(07北京)椭圆2 2 1(a b 0)的焦点为F1,F2,两条准线与x轴的交点分别ab
为M,N,若MN F1F2,则该椭圆离心率的取值范围是( )
二、借助平面几何关系建立a,c不等关系求解
x2y2
例2:(07湖南)设F1,F2分别是椭圆2 2 1(a b 0)的左、右焦点,若在其右ab
准线上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )
三、利用圆锥曲线相关性质建立a,c不等关系求解.
x2y2
例3:(2008福建)双曲线2 2 1(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,ab
且|PF1|=2|PF2|,则双曲线离心率的取值范围为( )
x2y2
备选(04重庆)已知双曲线2 2 1,(a