舞弊三角理论是谁提出的

“舞弊三角理论是谁提出的”相关的资料有哪些?“舞弊三角理论是谁提出的”相关的范文有哪些?怎么写?下面是小编为您精心整理的“舞弊三角理论是谁提出的”相关范文大全或资料大全,欢迎大家分享。

舞弊三角理论解析

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

毕 业 论 文

(本科生)

从舞弊三角理论解析舞弊现象

——巴林银行舞弊案的反思

学生姓名 _____汪中宙_______ 指导教师 ____ 刘睿洁_______ 级 别 2006级 学 院 ___会计与财务学院_ 专 业 ______审计学______ 班 级 06120101 学 号 0512010151

二〇一〇年五月二十五日

上海立信会计学院本科生毕业论文 从舞弊三角理论解析舞弊现象——巴林银行舞弊案的反思

摘要

进入21世纪以来,全球经济迅猛发展的同时,其负面影响是财务舞弊行为也日益的猖獗。近年来,许多国家的公司内部财务舞弊案频频发生,并且有愈演愈烈的趋势,这致使股东、债权人以及员工等都损失惨重。本文将从舞弊三角理论三因素角度对舞弊这一行为的发生进行分析。结合“巴林银行舞弊案”,通过舞弊三角理论从“压力”,“机会”和“借口”3个方面分析和探究案例中的那个实施舞弊员工的舞弊行为,并针对舞弊形成的3个因素提出降低舞弊三要素形成进而降低舞弊案发生概率的新思考,进一步探讨和促进舞弊的防范方法。

关键词:财务舞弊;舞弊三因素

舞弊三角理论解析

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

毕 业 论 文

(本科生)

从舞弊三角理论解析舞弊现象

——巴林银行舞弊案的反思

学生姓名 _____汪中宙_______ 指导教师 ____ 刘睿洁_______ 级 别 2006级 学 院 ___会计与财务学院_ 专 业 ______审计学______ 班 级 06120101 学 号 0512010151

二〇一〇年五月二十五日

上海立信会计学院本科生毕业论文 从舞弊三角理论解析舞弊现象——巴林银行舞弊案的反思

摘要

进入21世纪以来,全球经济迅猛发展的同时,其负面影响是财务舞弊行为也日益的猖獗。近年来,许多国家的公司内部财务舞弊案频频发生,并且有愈演愈烈的趋势,这致使股东、债权人以及员工等都损失惨重。本文将从舞弊三角理论三因素角度对舞弊这一行为的发生进行分析。结合“巴林银行舞弊案”,通过舞弊三角理论从“压力”,“机会”和“借口”3个方面分析和探究案例中的那个实施舞弊员工的舞弊行为,并针对舞弊形成的3个因素提出降低舞弊三要素形成进而降低舞弊案发生概率的新思考,进一步探讨和促进舞弊的防范方法。

关键词:财务舞弊;舞弊三因素

舞弊三角理论解析

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

毕 业 论 文

(本科生)

从舞弊三角理论解析舞弊现象

——巴林银行舞弊案的反思

学生姓名 _____汪中宙_______ 指导教师 ____ 刘睿洁_______ 级 别 2006级 学 院 ___会计与财务学院_ 专 业 ______审计学______ 班 级 06120101 学 号 0512010151

二〇一〇年五月二十五日

上海立信会计学院本科生毕业论文 从舞弊三角理论解析舞弊现象——巴林银行舞弊案的反思

摘要

进入21世纪以来,全球经济迅猛发展的同时,其负面影响是财务舞弊行为也日益的猖獗。近年来,许多国家的公司内部财务舞弊案频频发生,并且有愈演愈烈的趋势,这致使股东、债权人以及员工等都损失惨重。本文将从舞弊三角理论三因素角度对舞弊这一行为的发生进行分析。结合“巴林银行舞弊案”,通过舞弊三角理论从“压力”,“机会”和“借口”3个方面分析和探究案例中的那个实施舞弊员工的舞弊行为,并针对舞弊形成的3个因素提出降低舞弊三要素形成进而降低舞弊案发生概率的新思考,进一步探讨和促进舞弊的防范方法。

关键词:财务舞弊;舞弊三因素

库恩范式理论是由库恩提出的理论

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

理论简介:

库恩提出的理论:前范式科学(经过竞争而建立起范式)――常规科学(反常与危机使既有的范式发生动摇)――科学革命(经过竞争与选择而建立起新范式)――新常规科学。 库恩:

托马斯·库恩(Thomas Samuel Kuhn),1922年(壬戌年)7月18日-1996年(丙子年)6月17日,美国科学史家,科学哲学家,代表作有《哥白尼革命》和《科学革命的结构》。

1964年到1968年,库恩在普林斯顿大学任科学史和科学哲学教授,1968—1979年任派恩(M.T.Pyne)讲座科学史教授。这期间,库恩的德文,英文版的论文集《必要的张力》(1977)以及论文《黑体理论的量子不连续性》(1978)发表。在这些文章里,库恩通过一系列的科学史事件分析,进一步补充了他在《科学革命的结构》一书中对科学革命和范式所下的定义。 定义:

范式(paradigm)的概念和理论是美国著名科学哲学家托马斯·库恩(Thomas,Kuhn) 提出并在《科学革命的结构》(The Structure of Scientific Revolutions)(1962)中系统阐述的,它指的是一个共同体成员所共享的信仰、价值、技术等等的集合。指常规科学所赖以运作的理论基础和实践规

三角函数的概念和同角三角函数

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

典例分析

【例1】 ⑴在0?与360?范围内,找出与下列各角终边相同的角,并判断它们是第几象限角:

①?120?;②640?;③?950?12?.

⑵分别写出与下列各角终边相同的角的集合S, 写出S中满足不等式?360?≤?≤720?的元素?: ①80?;②?51?;③367?34?.

【例2】 ⑴把67?30'化成弧度;

3⑵把πrad化成度.

5

9【例3】 ⑴把157?30?化成弧度;⑵把πrad化成度.

5

【例4】 将下列各角化为2kπ??(0≤??2π,k?Z)的形式,并判断其所在象限.

19π; 3(2)-315°; (3)-1485°.

(1)

【例5】 下面四个命题中正确的是()

A.第一象限的角必是锐角 C.终边相同的角必相等

B.锐角必是第一象限的角

D.第二象限的角必大于第一象限的角

【例6】 把下列各角写成k?360???(0≤??360?)的形式,并指出它们所在的象限或终边位置.

⑴?135?;⑵1110?;⑶?540?.

【例7】 已知角?的终边经过点P(?3,3),则与?终边相同的角的集合是

.

2π??k?Z? A.?xx?2kπ?,3??5π??k?Z? C.?xx?kπ?,

三角函数的概念和同角三角函数

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

典例分析

【例1】 ⑴在0?与360?范围内,找出与下列各角终边相同的角,并判断它们是第几象限角:

①?120?;②640?;③?950?12?.

⑵分别写出与下列各角终边相同的角的集合S, 写出S中满足不等式?360?≤?≤720?的元素?: ①80?;②?51?;③367?34?.

【例2】 ⑴把67?30'化成弧度;

3⑵把πrad化成度.

5

9【例3】 ⑴把157?30?化成弧度;⑵把πrad化成度.

5

【例4】 将下列各角化为2kπ??(0≤??2π,k?Z)的形式,并判断其所在象限.

19π; 3(2)-315°; (3)-1485°.

(1)

【例5】 下面四个命题中正确的是()

A.第一象限的角必是锐角 C.终边相同的角必相等

B.锐角必是第一象限的角

D.第二象限的角必大于第一象限的角

【例6】 把下列各角写成k?360???(0≤??360?)的形式,并指出它们所在的象限或终边位置.

⑴?135?;⑵1110?;⑶?540?.

【例7】 已知角?的终边经过点P(?3,3),则与?终边相同的角的集合是

.

2π??k?Z? A.?xx?2kπ?,3??5π??k?Z? C.?xx?kπ?,

三角函数三角函数的诱导公式

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

三角函数的诱导公式(第一课时)

(一)复习提问,引入新课 思考 如何求 cos150 ?150 y

30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.

O

(二)新课讲授由三角函数的定义我们可以知道:

终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)

(公式一)

我们来研究角 与 的三角函数值之间的关系 y

因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos

M

O

P' (x, y)

sin( ) sin cos( ) cos tan( ) tan

(公式二)

思考 P '

铁三角 - 铝三角 - 金属钠

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

Fe

3Fe+4H2O(g)

高温 Fe3O4+4H2

Fe + 2H+ = Fe2+ + H2↑ Fe + Cu2+ == Cu + Fe2+ Fe + 2Fe3+ == 3Fe2+

Fe2+ + 2OH- == Fe(OH)2↓ 4Fe(OH)2 + O2 + 2H2O == 4 Fe(OH)3 (生成白色沉淀,迅速变成灰绿色,最后变成红褐色) 2Fe2+ + Cl2 == 2Fe3+ + 2Cl-

2Fe2+ + H2O2 + 2H+ == 2Fe3+ + 2H2O Fe3+ + 3OH- == Fe(OH)3↓

-2Fe3+ + 3CO32 + 3H2O == 2Fe(OH)3↓ + 3CO2↑(双水解) 2Fe3+ + Cu == 2Fe2+ + Cu2+ 2Fe3+ + 2I- == 2Fe2+ + I2

Fe3+ + 3SCN- == Fe(SCN)3 (红色溶液,Fe3+离子检验) Fe3+ + 3H2O Fe(OH)3(胶体) + 3H+ (氢氧化铁胶体制备)

FeO + 2H+ == Fe2+ + H2O Fe2O3 + 6H+ == Fe3+

三角函数、三角变换、解三角形、平面向量

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

三角函数、三角变换、解三角形、平面向量

第一讲 三角函数的图象与性质

1.任意角的三角函数

y

(1)设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=. x(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2. 正弦、余弦、正切的图象及性质 函数 性质 定义域 y=sin x R y=cos x R y=tan x π{x|x≠kπ+,k∈Z} 2图象 值域 [-1,1] 对称轴:x=kπ+对称性 π2[-1,1] 对称轴:x= R ?kπ,0?(k∈Z) 对称中心:kπ(k∈Z);对称中心: ?2?(k∈Z);对称中心:π(kπ+,0)(k∈Z) 2(kπ,0)(k∈Z) 2π 2π 单调减区间 π3π[2kπ+,2kπ+] 22π 周期 单调性 单调增区间[2kπ-ππZ) ,2kπ+](k∈Z); (k∈22单调增区间 单调增区间 ππ(kπ-,kπ+)(k∈Z) 22[2kπ-π,2kπ]( k∈Z); 奇偶性 奇 偶 奇 3. y=Asin(ωx+φ)的图象及性质

π3π

(1)五点作图法:五点的取法:设X=ωx+φ,X取0,,π,,2π时求相应的

铁三角 - 铝三角 - 金属钠

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

Fe

3Fe+4H2O(g)

高温 Fe3O4+4H2

Fe + 2H+ = Fe2+ + H2↑ Fe + Cu2+ == Cu + Fe2+ Fe + 2Fe3+ == 3Fe2+

Fe2+ + 2OH- == Fe(OH)2↓ 4Fe(OH)2 + O2 + 2H2O == 4 Fe(OH)3 (生成白色沉淀,迅速变成灰绿色,最后变成红褐色) 2Fe2+ + Cl2 == 2Fe3+ + 2Cl-

2Fe2+ + H2O2 + 2H+ == 2Fe3+ + 2H2O Fe3+ + 3OH- == Fe(OH)3↓

-2Fe3+ + 3CO32 + 3H2O == 2Fe(OH)3↓ + 3CO2↑(双水解) 2Fe3+ + Cu == 2Fe2+ + Cu2+ 2Fe3+ + 2I- == 2Fe2+ + I2

Fe3+ + 3SCN- == Fe(SCN)3 (红色溶液,Fe3+离子检验) Fe3+ + 3H2O Fe(OH)3(胶体) + 3H+ (氢氧化铁胶体制备)

FeO + 2H+ == Fe2+ + H2O Fe2O3 + 6H+ == Fe3+