凸包问题的时间复杂度
“凸包问题的时间复杂度”相关的资料有哪些?“凸包问题的时间复杂度”相关的范文有哪些?怎么写?下面是小编为您精心整理的“凸包问题的时间复杂度”相关范文大全或资料大全,欢迎大家分享。
排序算法时间复杂度比较
1
排序算法比较
主要内容:
1)利用随机函数产生
10000个随机整数,对这些数进行多种方法
排序。
2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。
3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。
程序的主要功能:
1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。
算法及时间复杂度
(一)各个排序是算法思想:
(1)直接插入排序:将一个记录插入到已排好的有序表中,从而得
到一个新的,记录数增加1的有序表。
(2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字
进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的
1
2
关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。
(3)快速排序:通过一趟排序将待排记录分割成独
排序算法时间复杂度比较
1
排序算法比较
主要内容:
1)利用随机函数产生
10000个随机整数,对这些数进行多种方法
排序。
2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。
3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。
程序的主要功能:
1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。
算法及时间复杂度
(一)各个排序是算法思想:
(1)直接插入排序:将一个记录插入到已排好的有序表中,从而得
到一个新的,记录数增加1的有序表。
(2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字
进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的
1
2
关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。
(3)快速排序:通过一趟排序将待排记录分割成独
数据结构算法时间复杂度的计算
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
时间复杂度的定义
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O 是数量级的符号),简称时间复杂度。
根据定义,可以归纳出基本的计算步骤
1. 计算出基本操作的执行次数T(n)
基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。
2. 计算出T(n)的数量级
求T(n)的数量级,只要将T(n)进行如下一些操作:
忽略常量、低次幂和最高次幂的系数
令f(n)=T(n)的数量级。
3. 用大O来表示时间复杂度
当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。
一个示例:
(1) int num1, num2;
(2) for(int i=0; i<n; i++){
(3) num1 += 1;
(4) for(in
数据结构算法时间复杂度的计算
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
时间复杂度的定义
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O 是数量级的符号),简称时间复杂度。
根据定义,可以归纳出基本的计算步骤
1. 计算出基本操作的执行次数T(n)
基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。
2. 计算出T(n)的数量级
求T(n)的数量级,只要将T(n)进行如下一些操作:
忽略常量、低次幂和最高次幂的系数
令f(n)=T(n)的数量级。
3. 用大O来表示时间复杂度
当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。
一个示例:
(1) int num1, num2;
(2) for(int i=0; i<n; i++){
(3) num1 += 1;
(4) for(in
算法复杂度习题
一、选择题
1.个算法应该是( )。
A.程序 B.问题求解步骤的描述 C.要满足五个基本特性 D. A和C 2.某算法的时间复杂度为O(n2),表明该算法的( )。 A.问题规模是n2 B.执行时间等于n2
C.执行时间与n2成正比 D.问题规模与n2成正比
3.以下算法的时间复杂度为( )。 void fun(int n) { int i=l;
while(i<=n) i=i*2; }
A. O(n) B. O(n2) C. O(nlog2n) D. O(log2n)
4.【2011年计算机联考真题】
设n是描述问题规模的非负整数,下面程序片段的时间复杂度是()。 x=2;
while(x A. O(log2n) B. O(n) C. O(nlog2n) D. O(n2) 5.【2012年计算机联考真题】 求整数n (n>=0)阶乘的算法如下,其时间复杂度是( )。 int fact(int n){ if (n<=l) return 1; return n*fact(n-1); } A. O(log2n) B. O(n) C. O(nlog2n) D. O(n2) 6.有以下算法,其时间复杂度为( )。 void fu
凸包问题
凸包问题
摘要:凸包问题是计算机几何中的一个经典问题,它要求将平面内的点集用最少的凸点将所有的顶点封闭。凸包问题的应用十分广泛,很多最优化问题经过抽象后可以发现它最终是凸包问题模型;它还可以用于人际关系网络的最小化搜索, 通过人际关系,可以合理推断出某人的身份,职位等个人特征。目前求取凸包的常用算法有:穷举法,格雷厄姆扫描法(Graham),分治法,蛮力法和Jarris 步进法。其中穷举法与蛮力法都是建立在穷举的算法思想上,它们的时间复杂度比较大,格雷厄姆扫描法采用几何方面的知识,降低了求解过程的时间复杂度。 关键词: 凸包问题 ;计算机几何 ;格雷厄姆扫描法
一、引言
凸包问题的完整描述:令S 是平面上的一个点集,封闭S 中所有顶点的最小凸多边形,称为S 的凸包,表示为CH(S)。如下图一所示,由红色线段表示的多边形就是点集Q={p0,p1,...p12}的凸包。
图一
凸包问题是计算机几何的一个经典问题,它可以解决很多优化模型,目前目前求取凸包的常用算法有:穷举法,格雷厄姆扫描法(Graham),分治法,蛮力法和Jarris 步进法。本文主要讨论穷举法,蛮力法,以及格雷厄姆
周期序列的K-错线性复杂度分析和研究
周期序列的K-错线性复杂度分析和研究
Analyse and Research of the k-error Linear Complexity
of Periodic Sequences
作 者 姓 学 位 类 学 科、专 研 究 方 导 师 及 职
名 王菊香 型 学 历 硕 士 业 应 用 数 学 向 代数编码和序列密码 称 朱士信 教授
2009年3月
目录
第一章 绪论 ........................................................ 1
1.1 研究背景 ................................................... 1 1.2 论文研究的内容及主要结果 ................................... 3 第二章 基础知识 .................................................... 5
2.1 密码学基础知识 .............
Java数组排序总结(冒泡,选择,插入,希尔) 递归算法的复杂度
Java数组排序总结(冒泡,选择,插入,希尔) public class SortAll { /**
* 冒泡排序,选择排序,插入排序,希尔(Shell)排序 Java的实现 * 2008.11.09
* @author YangL. (http://www.idcn.org) */
public static void main(String[] args) {
int[] i = { 1, 5, 6, 12, 4, 9, 3, 23, 39, 403, 596, 87 }; System.out.println(\冒泡排序的结果:\ maoPao(i);
System.out.println();
System.out.println(\选择排序的结果:\ xuanZe(i);
System.out.println();
System.out.println(\插入排序的结果:\ chaRu(i);
System.out.println();
System.out.println(\希尔(Shell
一种混沌伪随机序列复杂度分析法
第("卷第+期"##$年+月
(#+)!###A$"&#J"##$J("J!+%!A#*
物理学报
E-KELMNOP-EOPQP-E
###############################################################
R5<’(",Q5’+,ES6S28,"##$
!"##$-.7D’L.12’O59’
一种混沌伪随机序列复杂度分析法!
蔡觉平!)李赞")宋文涛!)
!)
")
(上海交通大学电子工程系,上海"###$#)
%!##%!)
(西安电子科技大学综合业务网国家重点实验室,西安
("##"年&月$#日收到;"##"年!"月!$日收到修改稿)
分析了已有的序列线性复杂度分析方法,提出了用近似熵算法计算混沌运动的测度熵,作为衡量混沌伪随机序列复杂度的标准’理论研究表明,利用较短的观察序列,该方法能够准确地反映混沌系统和混沌伪随机序列复杂度的大小,可以作为判断利用混沌系统产生的伪随机序列的复杂度准则’实验结果表明该方法的有效性和理论结果的正确性
对于一个具有n个元素的线性表,建立其单链表的最小时间复杂度为( ) A
一、整体解读
试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础
试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度
选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察
在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体