数学中考二次函数真题
“数学中考二次函数真题”相关的资料有哪些?“数学中考二次函数真题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学中考二次函数真题”相关范文大全或资料大全,欢迎大家分享。
历年中考真题二次函数精选
备战2012年中考数学
4.(2011.重庆)已知抛物线y?ax?bx?c(a?0)在平面直角
2坐标系中的位置如图所示,则下列结论中,正确的是( ) A、a>0 B b<0 C c<0 D a+b+c>0
6.(2011.山东荷泽)如图为抛物线y?ax?bx?c的图像,A B C 为抛物线与坐标轴
2的交点,且OA=OC=1,
则下列关系中正确的是
A. a?b??1 B. a?b??1 ( 第 6 题图 ) C. b<2a D. ac<0
13.(2011.义乌)如图,一次函数y=-2x的图象与二次函数y=-x+3x图象的对称轴
2
交于点B.
(1)写出点B的坐标 ▲ ;
2
(2)已知点P是二次函数y=-x+3x图象在y轴右侧部分上的一 ..
个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于 C、D两点. 若以CD为直角边的△PCD与△OCD相似,则点 P的坐标为 ▲ .
D O
C
B
214.(2011贵阳)如图所示,二次函数y??x?2x?m的图
象与x轴的一个交点
为A(3,0),另一个交点为B,且与y轴交于点
0>中考真题练习之 二次函数应用题
中考真题练习之 二次函数的应用题以及详细解答 1.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
2.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
3.如图,李师傅想用长为80米的棚栏,再借助教学楼的外墙围成一个矩形的活动区ABCD.已知教学楼外墙长50米,设矩形ABCD的边长AB为x(米),面积为S(平方米).
(1)请写出活动区面积S与x之间的关系式,并指出x的取值范围; (2)当AB为多少米时,活动区的面积最大?最大面积是多少?
4.某水果批发商销售每
中考真题练习之 二次函数应用题
中考真题练习之 二次函数的应用题以及详细解答 1.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
2.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
3.如图,李师傅想用长为80米的棚栏,再借助教学楼的外墙围成一个矩形的活动区ABCD.已知教学楼外墙长50米,设矩形ABCD的边长AB为x(米),面积为S(平方米).
(1)请写出活动区面积S与x之间的关系式,并指出x的取值范围; (2)当AB为多少米时,活动区的面积最大?最大面积是多少?
4.某水果批发商销售每
2015中考数学真题分类汇编:二次函数(压轴题)
26.(13分)(2015?福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.
(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ =S△PAQ,求m的值;
(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD?DQ的最大值.
PH=
a=)
,得出
1
==,
==
OA
OA=2
=
PH=
,
6
DQ
a=
,
2
3
4
25.(10分)(2015?莆田)抛物线y=ax +bx+c ,若a ,b ,c 满足b=a+c ,则称抛物线y=ax +bx+c 为“恒定”抛物线.
(1)求证:“恒定
”抛物线y=ax 2+bx+c 必过x 轴上的一个定点A ;
(2)已知“恒定”抛物线y=x 2﹣的顶点为P ,与x 轴另一个交点为B ,是否存在以Q
为顶点,与x 轴另一个交点为C 的“恒定”抛物线,使得以PA ,CQ 为边的四边形是平行四x 的顶点坐标和QM=OP=﹣OQ=OP=+x ,时,﹣,,﹣QM=OP=
)
﹣
,
y=
x x+3;
,
)
,
﹣+
x x+3﹣.
5
6
抛物线y=x 2
上任意一点到点(0,1)的距离与到直线y=﹣1的距
重庆中考数学二次函数26题
1、如图1,抛物线y?1213x?x?3与x轴相交于A、B两点(点A在点B的右侧),已知C(0,)。连接2222FH,求l的最大值。(3)如图2,3AC。(1)求直线AC的解析式。(2)点P是x轴下方的抛物线上一动点,过点P作PE⊥x轴交直线AC于点E,交x轴于点F,过点P作PG⊥AE于点G,线段PG交x轴于点H。设l=EP—
在(2)的条件下,点M是x轴上一动点,连接EM、PM,将△EPM沿直线EM折叠为△EP1M,连接AP,AP1。当△APP1是等腰三角形时,试求出点M的坐标。
2.已知抛物线y??x2?2x?c与x轴交于A、B两点,其中点A (-1,0).抛物线与y 轴交于点C,顶点为D,点N在抛物线上,其横坐标为
5. http://www.lhjy.net.cn/ 2(1)如图1,连接BD,求直线BD的解析式;
(2)如图2,连接BC,把△OBC沿x轴正方向平移,记平移后的三角形为△O′B′C ′,当点C ′ 落在△BCD内部时,线段B′C ′与线段DB交于点M,设△O′B′C ′与△BCD重叠面积为T,若T=http://www.lhjy.net.cn/
(3)如图3,连接CN,点P为直线CN上的动点,点Q在抛物线上,连接CQ、PQ得
中考数学-二次函数综合
2020年-春季-二次函数综合1.(初2020级重庆巴蜀初三下第三次模拟)
2.(初2020级重庆南开初三下第三次模拟)
3.(初2020级重庆西附初三下第三次模拟)
4.(初2020级重庆一外初三下第三次模拟)
5.(初2020级重庆一中初三下第三次模拟)
6.(初2020级重庆巴蜀初三下第二次模拟)
7.(初2020级重庆一中初三下第二次模拟)
8.(初2020级重庆一外初三下第二次模拟)
9.(初2020级重庆育才初三下第二次模拟)
10.(初2020级万二中初三下第二次模拟)如图,在平面直角坐标系中,直线y=﹣x+5与x
轴交于点B,与y轴交于点C.抛物线
y=x2+bx+c经过点B和点C,与x轴交于另一点A,连接AC.
(1)求抛物线解析式;
(2)若点Q在直线BC上方的抛物线上,连接QC,QB,当△ABC与△QBC的面积比等于2:3时,求点Q的坐标:
(3)在(2)的条件下,点H在x轴的负半轴,连接AQ,QH,当∠AQH=∠ACB时,求点H的坐标.
11.(初2020级重庆八中初三下第一次模拟)
12.(初2020级重庆巴蜀初三下第一次模拟)
13.(初2020级重庆南开初三下第一次模拟)
14.(初2020级重庆一中初三下第一次模拟)
15.(初2020级重庆育才初
中考数学二次函数压轴题题型归纳
页眉内容
中考二次函数综合压轴题型归类
一、常考点汇总
1、两点间的距离公式:()()22B A B A x x y y AB -+-=
2、中点坐标:线段AB 的中点C 的坐标为:???
??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:
(1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠
(3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k
3、一元二次方程有整数根问题,解题步骤如下:
① 用?和参数的其他要求确定参数的取值范围;
② 解方程,求出方程的根;(两种形式:分式、二次根式)
③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x 的一元二次方程()0122
2=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上)
例:若抛物线()3132
+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求
2015中考数学真题分类汇编:二次函数(填空题)解析
2015中考数学真题分类汇编:二次函数(填空题)
一.填空题(共21小题)
2
1.(2015?常州)二次函数y=﹣x+2x﹣3图象的顶点坐标是 .
2.(2015?漳州)已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.
3.(2015?杭州)函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而 (填写“增大”或“减小”).21教育网 4.(2015?天水)下列函数(其中n为常数,且n>1) ①y=(x>0);②y=(n﹣1)x;③y=
2
(x>0);④y=(1﹣n)x+1;⑤y=﹣
x+2nx(x<0)中,y的值随x的值增大而增大的函数有 个.
5.(2015?淄博)对于两个二次函数y1,y2,满足y1+y2=2x2+2x+8.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式 (要求:写出的解析式的对称轴不能相同).
6.(2015?十堰)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>
2013年中考真题——二次函数(一)
2013年中考真题——二次函数(一)
1
2013年中考真题——二次函数(一)
一.解答题(共30小题)
1.(2013?遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x
轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A,B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.
2.(2013?自贡)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛
物线于点D,并且D(2,3),tan∠DBA=.
(1)求抛物线的解析式;
(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.
3.(2013?资阳)如图,四边形ABCD是平行四边形,过点A、C、D作抛物
2013年中考真题——二次函数(一)
2013年中考真题——二次函数(一)
1
2013年中考真题——二次函数(一)
一.解答题(共30小题)
1.(2013?遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x
轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A,B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.
2.(2013?自贡)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛
物线于点D,并且D(2,3),tan∠DBA=.
(1)求抛物线的解析式;
(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.
3.(2013?资阳)如图,四边形ABCD是平行四边形,过点A、C、D作抛物