二次函数中存在平行四边形

“二次函数中存在平行四边形”相关的资料有哪些?“二次函数中存在平行四边形”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数中存在平行四边形”相关范文大全或资料大全,欢迎大家分享。

二次函数与平行四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数与平行四边形

1.已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。

(1)求抛物线的解析式;

(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形

为平行四边形,求D点的坐标;

2.如图,在坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A (1,0),B (0,2),

抛物线221

2bx x y 的图象过C 点.

(1)求抛物线的解析式;

(2)平移该抛物线的对称轴所在直线l .当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?

(3)点P 是抛物线上一动点,是否存在点P ,使四边形PACB 为平行四边形?若存在,求出P 点坐标;若不存在,说明理由.

3.如图,抛物线32bx ax y 与x 轴相交于点A (﹣1,0)、B (3,0),与y 轴相交于点C ,

点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC

分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF .

(1)求抛物线的解析式;

(2)当四边形ODEF 是平行四边形时,求点P 的坐标;(3)过点A 的直线将(2)中的平行四边形ODEF 分成面积相等

二次函数平行四边形存在性问题例题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数平行四边形存在性问题例题

一.解答题(共9小题)

1.如图,抛物线经过A(﹣1,0),B(5,0),C(0,(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标; (3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

)三点.

2.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).

(1)求抛物线的解析式及点B坐标;

(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

第1页(共29页)

3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点

分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的

平行四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

19.2 平行四边形(第一课时)

教学目标:

知识与技能:

1、理解并掌握平行四边形的定义;

2、掌握平行四边形的性质定理1及性质定理2; 3、理解两条平行线的距离的概念; 4、培养学生综合运用知识的能力

过程与方法:经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理

的能力。

情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际

应用价值。

重点、难点:

重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 难点:运用平行四边形的性质进行有关的论证和计算.

教具准备:图片、三角板 课时安排:一课时 教学过程:

一、导入新课

引入:

等,都是平行四边形,平行四边形有哪些性质呢?

什么是平行四边形? 平行四边形的定义:

(1)定义: 两组对边分别平行的四边形叫做平行四边形。

在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本

(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”

二次函数中平行四边形通用解决方法

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

● 探究

(1)在图1中,已知线段AB,CD,其中点分别为E,F。 ①若A(-1,0),B(3,0),则E点坐标为__________; ②若C(-2,2),D(-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;

●归纳

无论线段AB处于直角坐标系中的哪个位置,

b)Bd)AB中点为Dy) 时,x=_________,y=___________;当其端点坐标为A(a,,(c,,(x,

(不必证明) ●运用

在图2中,一次函数y=x-2与反比例函数

的图象交点为A,B。

①求出交点A,B的坐标;

②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。

1

以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊

二次函数之平行四边形存在性问题攻略 祝林华

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数之平行四边形存在性问题攻略

祝林华

(四川省广安市邻水县邻水实验学校,638500)

二次函数综合题是全国各省市每年必考的中考题型,与二次函数有关的存在性问题更是必考题型。笔者就以平行四边形的存在性为例,谈谈研究这类题型的基本思路和解题技巧。

在平行四边形有关存在性问题中,常会遇到这样两类探究性的问题:(1)已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(下文出现时简称“三定一动”);(2)已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(下文出现时简称“两定两动”);平行四边形的这四个点有可能是定序的,也有可能没有定序;由于定序较为简单,所以笔者就不再举例说明。学生在拿到这类题型时常常无从下笔,比较典型的两种错误:一是确定动点位置时出现遗漏,而是在具体计算动点坐标时出现方法不当或错解。实际上,这类题型的解法是有章可循的,就是要掌握好解决这类题型的基本思路和解题技巧。 一、基本思路:

(1)分清题型(属于三定一动还是两定两动,因为这两种题型的分类标准有所

不同);

(2)分类讨论且作图(利用分类讨论不重不漏的寻找动点具体位置); (3)利用几何特征计算(不同的几何存在性要用不同

在平行四边形ABCD中

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度1cm/s向C,A运动

(1)四边形DEBF是平行四边形吗?请说明理由.

(2)若BD=12cm,AC=16cm,当运动时间t为何值时,四边形DEBF是矩形?

、解答题(每题10分,共30分)

23、如图,△ABC中,点O是AC边上一动点,过点O作直线MN‖BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于点F。 (1) 说明:EO=OF

(2) 当点O运动到何处时,四边形AECF是距形?并说明理由。

(3) 当△ABC满足什么条件时,四边形

2010——2011学年第一学期初二数学期中试题(卷) 一、选择题(每小题3分,共30分)

1、下列各数中:,0,

0.32

00.1010010001中,无理3数个数有( )个 A: 3 B: 4 C:: 5 D:: 6

2、在下列几组数中,能作为直角三角形三边的是:( ) A :1,2,3 B: 32,42,52 C:11,14,15 D :

3、下列说法正确的个数有( )个

的算术平方根是3

平行四边形复习讲义

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

中学1对1课外辅导专家

学科培训师辅导讲义

学员编号 学员姓名 课 题 备课时间 教学目标 重点、难点 年 级 辅导科目 七年级 数学 课时数 学科培训师 2 周老师 平行四边形复习讲义 2016年04月 14日 授课时间 2016年04月15日 掌握平行四边形、矩形、菱形、正方形等概念,掌握平行四边形、矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。 1.平行四边形、矩形、菱形、正方形性质及判定的应用 2.相关知识的综合应用 特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之 一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及考点及考试要求 灵活运用数学思想方法解决问题的能力。内容主要包括:矩形、菱形、 正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。 教学内容 (1) 演变关系: (2) 从属关系: 1

成功不是凭梦想和希望,而是凭努力和实践

平行四边形教学方案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

平行四边形(一)

【教学内容】

  教科书第70页例1、例2、练习十九1,3,4。

【教学目标】

1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。

2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。

3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。

4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。

5.了解平行四边形在生活中的应用。

【教学重、难点】

教学重点:认识平行四边形及其特征。

教学难点:自己探索、发现、描述、应用平行四边形的特征。

【教学准备】

教具:课件,长方形、三角形活动框,磁性小棒。

学具:三角板,量角器,直尺,平行四边形

纸片(4人小组相同),小棒4根(两两等长)。

【教学过程】

一、    导入新课

 

1.     目标导学。

(1)           什么是平行四边形?

(2) 平行四边形

二次根式勾股定理平行四边形综合试卷

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

绵竹实验学校第一次统一考试八年级(上) 数学试卷 一、选择题(每题3分,共30分) 1.21-的绝对值等于 ( ) A.2 2 C.22 22 2.三个正方形的面积如图(1),正方形A 的面积为( )

A. 6

B. 36

C. 64

D. 8 3. 在式子()()()230,2,12,20,3,1,2x x y y x x x x y +=--++中,二次根式有( ) A. 2个 B. 3个 C. 4个 D. 5个 4.一个三角形的三边长分别是3,4,5,则这个三角形最长边上的高是( ) A. 4 B. 310 C. 25 D. 512 3、函数y=11x -+中,自变量x 的取值范围是( ). A .x ≥-1 B .x>2 C .x>-1且x ≠2 D .x ≥-1且x ≠2 6、下列各组根式中,是可以合并的根式是( ) A 、318和 B 、133和 C 、22a b ab 和 D 、11a a +-和 7..一只蚂蚁沿直角三角形的边

平行四边形 较难 题库

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

勾股定理 ?难度一般2 题库

1.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为( ).

5533A.2 B.210 C.10 10 D.5 10

2.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第n个正方形的边长为( )

nn﹣1A.n B.(n﹣1)2 C.(2) D.(2)

3.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝

22

隙).若①②③④四个平行四边形面积的和为14cm,四边形ABCD面积是11cm,则①②③④四个平行四边形周长的总和为( )

A.48cm B.36cm C.24cm D.18cm

4.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )

A. B.2 C.3 D.

5.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点

试卷第1页,总25页

C与点O重合,折痕MN恰好