23考研高数汤家凤
“23考研高数汤家凤”相关的资料有哪些?“23考研高数汤家凤”相关的范文有哪些?怎么写?下面是小编为您精心整理的“23考研高数汤家凤”相关范文大全或资料大全,欢迎大家分享。
2016文都考研高数汤家凤冲刺班讲义
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研高数习题集(上)
第二讲: 单元一: 定义求导
导数及应用
f(x)cosx 1
[ [f(x)cosx]'x 0 2]
x 0x
f(x)(cosx 1) f(x) f(0)
[lim 1 0 f'(0) 2]
x 0x
1. 设f(0) 1,f'(0) 2, 求: lim
2. 设f x 可导, f 0 1,f' 0 0, 求: lim
x 0
f(sinx) 1
lnf(x)
[lim
x 0
f(sinx) f(0)x 0sinx
1]
sinx 0lnf(x) lnf(0)x
3. 设lim
x a
f(x) bsinf(x) sinb. A, 求: lim
x ax ax a
sinf(x) sinbf(x) b
Acosb]
x af(x) bx a
[lim
4. 设f(x 1) af(x),f'(0) b(a,b 0), 求: f'(1). [f'(1) lim
x 0
f(x 1) f(1)a[f(x) f(0)]
lim ab] x 0xx
5. 设f(1 x) 3f(1 x) 8x(1 sinx), 并且f(x)可导, 求f'(1).
[f(1) 0,f'(1) 3f'(1) lim
x 0
8x(1 sinx)f(1
高数考研大一下6
第六讲 几类常微分方程的求解方法7-1 一阶微分方程的解法 (P411) 一. 方法指导1. 标准类型方程的解法
关键 : 辨别方程类型 , 掌握求解步骤(1) 可分离变量方程
解法: 分离变量 , 两边积分(2) 齐次方程
解法: 令
化成可分离变量型
(3) 一阶线性方程 解法: 常数变易法或代公式
(4) 贝努力方程 解法: 令 化成线性方程 .
(5) 全微分方程
解法: 求
Q P x y通解为
的原函数
二. 非标准类型方程的解法1、 变量代换法 转化为标准类型求解
例如, 方程
a b a x b y c 0 的根 (h , k ) , 若 , 先求 a1 b1 a1 x b1 y c 1 0 作变换 x X h , y Y k , 则原方程化为 dY a X bY (齐次方程) d X a1 X b1Y a b 若 , 作变换 v a x b y , 化成可分离变量 a1 b1方程.4
2、 积分因子法
不是全微分方程选择积分因子
( x, y)
P d x Q d y 0 为全微分方程常用的微分倒推式有
1) d x d y d ( x
考研高数求极限的方法指南
十年专注 只做考研 www.xuefu.com
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0
考研高数求极限的方法指南
十年专注 只做考研 www.xuefu.com
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0
高数考研大一下6
第六讲 几类常微分方程的求解方法7-1 一阶微分方程的解法 (P411) 一. 方法指导1. 标准类型方程的解法
关键 : 辨别方程类型 , 掌握求解步骤(1) 可分离变量方程
解法: 分离变量 , 两边积分(2) 齐次方程
解法: 令
化成可分离变量型
(3) 一阶线性方程 解法: 常数变易法或代公式
(4) 贝努力方程 解法: 令 化成线性方程 .
(5) 全微分方程
解法: 求
Q P x y通解为
的原函数
二. 非标准类型方程的解法1、 变量代换法 转化为标准类型求解
例如, 方程
a b a x b y c 0 的根 (h , k ) , 若 , 先求 a1 b1 a1 x b1 y c 1 0 作变换 x X h , y Y k , 则原方程化为 dY a X bY (齐次方程) d X a1 X b1Y a b 若 , 作变换 v a x b y , 化成可分离变量 a1 b1方程.4
2、 积分因子法
不是全微分方程选择积分因子
( x, y)
P d x Q d y 0 为全微分方程常用的微分倒推式有
1) d x d y d ( x
王莉考研复习教程高数部分答案(数三)
第一篇 微积分
第一章 函数、极限与连续 强化训练(一) 一、 选择题 1.
2. 提示:参照“例1.1.5”求解。 3.
4. 解因选项(D)中的??不能保证任意小,故选(D) 5.
6.
7.
8.
9.
10.
二、
填空题
211. 提示:由cosx?1?2sin12.
x可得。 2
13.提示:由1未定式结果可得。
14.提示:分子有理化,再同除以n即可。
15.提示:分子、分母利用等价无穷小代换处理即可。 16.
?
17.
18.
19.解因
x?0limf?x??lim??x?02(1?cosx)2?2cosx?lim?limx?0?x?0?xx12?x2?x2?lim??1 x?0?xxx?0xlimfx?limae?a, ????x?0而f?0??a,故由f?x?在x?0处连续可知,a??1。
20.提示:先求极限(1型)得到f?x?的表达式,再求函数的连续区间。
?三、 21.(1)
解答题
(2) 提示:利用皮亚诺型余项泰勒公式处理sin(3)
12,sin。 xx
(4)
(5)提示:先指数对数化,再用洛必达法则。 (6)提示:请参照“例1.2.14(3)”求解。 22.
23.解由题设极限等式条件得
1limexx?02l
2012高数考研讲义4-5章
新东方在线 [www.koolearn.com ] 2010考研数学网络课堂电子教材系列 高等数学
2010考研强化班高等数学讲义主讲:汪诚义
欢迎使用新东方在线电子教材
考研强化班高等数学讲义(四至五章)
第四章 常微分方程
§4.1 基本概念和一阶微分方程
(甲) 内容要点 一、基本概念
1、 常微分方程和阶 2、 解、通解和特解 3、 初始条件
4、 齐次线性方程和非齐次线性方程 二、变量可分离方程及其推广
1、
dydx?p(x)Q(y)dy(Q(y)?0)
2、齐次方程:
?y??f?? dx?x?三、一阶线性方程及其推广
1、2、
dydxdydx?P(x)y?Q(x) ?P(x)y?Q(x)y?(??0,1)
四、全微分方程及其推广(数学一)
1、 P(x,y)dx?Q(x,y)dy?0,满足?Q?x?p?y??P?y
2、 P(x,y)dx?Q(x,y)dy?0,?Q?x?但存在R(x,y),使?(RQ)?x??(RP)?y
新东方在线 [www.koolearn.com ] 2010考研数学网络课堂电子教材系列 高等数学
五、差分方程(数学三)